The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chondrocytes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chondrocytes

 

Psychiatry related information on Chondrocytes

 

High impact information on Chondrocytes

 

Chemical compound and disease context of Chondrocytes

 

Biological context of Chondrocytes

 

Anatomical context of Chondrocytes

 

Associations of Chondrocytes with chemical compounds

 

Gene context of Chondrocytes

  • Because Osx null preosteoblasts express typical chondrocyte marker genes, we propose that Runx2/Cbfa1-expressing preosteoblasts are still bipotential cells [28].
  • Here, Sox9 is identified as a regulator of the chondrocyte lineage [29].
  • In Hspg2-/- cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished [30].
  • Analysis of PTHrP (-/-) mutant mice indicated that the PTHrP protein signals to its receptor in the prehypertrophic chondrocytes, thereby blocking hypertrophic differentiation [31].
  • Misexpression of Ihh prevents proliferating chondrocytes from initiating the hypertrophic differentiation process [31].
 

Analytical, diagnostic and therapeutic context of Chondrocytes

References

  1. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Vega, R.B., Matsuda, K., Oh, J., Barbosa, A.C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J.M., Richardson, J.A., Karsenty, G., Olson, E.N. Cell (2004) [Pubmed]
  2. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Schipani, E., Ryan, H.E., Didrickson, S., Kobayashi, T., Knight, M., Johnson, R.S. Genes Dev. (2001) [Pubmed]
  3. Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation. Baragi, V.M., Renkiewicz, R.R., Jordan, H., Bonadio, J., Hartman, J.W., Roessler, B.J. J. Clin. Invest. (1995) [Pubmed]
  4. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. Goldring, M.B., Birkhead, J.R., Suen, L.F., Yamin, R., Mizuno, S., Glowacki, J., Arbiser, J.L., Apperley, J.F. J. Clin. Invest. (1994) [Pubmed]
  5. Vascular cell adhesion molecule 1 (CD106) on primary human articular chondrocytes: functional regulation of expression by cytokines and comparison with intercellular adhesion molecule 1 (CD54) and very late activation antigen 2. Kienzle, G., von Kempis, J. Arthritis Rheum. (1998) [Pubmed]
  6. Retinoic acid stimulates chondrocyte differentiation and enhances bone morphogenetic protein effects through induction of Smad1 and Smad5. Li, X., Schwarz, E.M., Zuscik, M.J., Rosier, R.N., Ionescu, A.M., Puzas, J.E., Drissi, H., Sheu, T.J., O'Keefe, R.J. Endocrinology (2003) [Pubmed]
  7. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Seki, S., Kawaguchi, Y., Chiba, K., Mikami, Y., Kizawa, H., Oya, T., Mio, F., Mori, M., Miyamoto, Y., Masuda, I., Tsunoda, T., Kamata, M., Kubo, T., Toyama, Y., Kimura, T., Nakamura, Y., Ikegawa, S. Nat. Genet. (2005) [Pubmed]
  8. Cbfbeta interacts with Runx2 and has a critical role in bone development. Kundu, M., Javed, A., Jeon, J.P., Horner, A., Shum, L., Eckhaus, M., Muenke, M., Lian, J.B., Yang, Y., Nuckolls, G.H., Stein, G.S., Liu, P.P. Nat. Genet. (2002) [Pubmed]
  9. A mutant PTH/PTHrP type I receptor in enchondromatosis. Hopyan, S., Gokgoz, N., Poon, R., Gensure, R.C., Yu, C., Cole, W.G., Bell, R.S., Jüppner, H., Andrulis, I.L., Wunder, J.S., Alman, B.A. Nat. Genet. (2002) [Pubmed]
  10. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. DeChiara, T.M., Kimble, R.B., Poueymirou, W.T., Rojas, J., Masiakowski, P., Valenzuela, D.M., Yancopoulos, G.D. Nat. Genet. (2000) [Pubmed]
  11. Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis. Quarto, R., Campanile, G., Cancedda, R., Dozin, B. J. Cell Biol. (1992) [Pubmed]
  12. Induction of proliferation or hypertrophy of chondrocytes in serum-free culture: the role of insulin-like growth factor-I, insulin, or thyroxine. Böhme, K., Conscience-Egli, M., Tschan, T., Winterhalter, K.H., Bruckner, P. J. Cell Biol. (1992) [Pubmed]
  13. Cellular transformation and differentiation. Effect of Rous sarcoma virus transformation on sulfated proteoglycan synthesis by chicken chondrocytes. Muto, M., Yoshimura, M., Okayama, M., Kaji, A. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  14. Osteopontin deficiency protects joints against destruction in anti-type II collagen antibody-induced arthritis in mice. Yumoto, K., Ishijima, M., Rittling, S.R., Tsuji, K., Tsuchiya, Y., Kon, S., Nifuji, A., Uede, T., Denhardt, D.T., Noda, M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Role of the progressive ankylosis gene (ank) in cartilage mineralization. Wang, W., Xu, J., Du, B., Kirsch, T. Mol. Cell. Biol. (2005) [Pubmed]
  16. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Watanabe, H., Yamada, Y. Nat. Genet. (1999) [Pubmed]
  17. Enhanced cellular fibronectin accumulation in chondrocytes treated with vitamin A. Hassell, J.R., Pennypacker, J.P., Kleinman, H.K., Pratt, R.M., Yamada, K.M. Cell (1979) [Pubmed]
  18. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. St-Jacques, B., Hammerschmidt, M., McMahon, A.P. Genes Dev. (1999) [Pubmed]
  19. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Sahni, M., Ambrosetti, D.C., Mansukhani, A., Gertner, R., Levy, D., Basilico, C. Genes Dev. (1999) [Pubmed]
  20. Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts. West, C.M., Lanza, R., Rosenbloom, J., Lowe, M., Holtzer, H., Avdalovic, N. Cell (1979) [Pubmed]
  21. 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Konieczny, S.F., Emerson, C.P. Cell (1984) [Pubmed]
  22. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S., Wong, T., Campagnuolo, G., Moran, E., Bogoch, E.R., Van, G., Nguyen, L.T., Ohashi, P.S., Lacey, D.L., Fish, E., Boyle, W.J., Penninger, J.M. Nature (1999) [Pubmed]
  23. The elastin receptor: a galactoside-binding protein. Hinek, A., Wrenn, D.S., Mecham, R.P., Barondes, S.H. Science (1988) [Pubmed]
  24. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Takeda, S., Bonnamy, J.P., Owen, M.J., Ducy, P., Karsenty, G. Genes Dev. (2001) [Pubmed]
  25. Cyclic GMP-dependent protein kinase II is a molecular switch from proliferation to hypertrophic differentiation of chondrocytes. Chikuda, H., Kugimiya, F., Hoshi, K., Ikeda, T., Ogasawara, T., Shimoaka, T., Kawano, H., Kamekura, S., Tsuchida, A., Yokoi, N., Nakamura, K., Komeda, K., Chung, U.I., Kawaguchi, H. Genes Dev. (2004) [Pubmed]
  26. Auricular chondritis in rats. An experimental model of relapsing polychondritis induced with type II collagen. Cremer, M.A., Pitcock, J.A., Stuart, J.M., Kang, A.H., Townes, A.S. J. Exp. Med. (1981) [Pubmed]
  27. Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. Amin, A.R., Attur, M., Patel, R.N., Thakker, G.D., Marshall, P.J., Rediske, J., Stuchin, S.A., Patel, I.R., Abramson, S.B. J. Clin. Invest. (1997) [Pubmed]
  28. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., de Crombrugghe, B. Cell (2002) [Pubmed]
  29. Sox9 is required for cartilage formation. Bi, W., Deng, J.M., Zhang, Z., Behringer, R.R., de Crombrugghe, B. Nat. Genet. (1999) [Pubmed]
  30. Perlecan is essential for cartilage and cephalic development. Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J.R., Yamada, Y. Nat. Genet. (1999) [Pubmed]
  31. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., Tabin, C.J. Science (1996) [Pubmed]
  32. Initiation of endochondral calcification is related to changes in the redox state of hypertrophic chondrocytes. Shapiro, I.M., Golub, E.E., Kakuta, S., Hazelgrove, J., Havery, J., Chance, B., Frasca, P. Science (1982) [Pubmed]
  33. Expression of the murine plasma cell nucleotide pyrophosphohydrolase PC-1 is shared by human liver, bone, and cartilage cells. Regulation of PC-1 expression in osteosarcoma cells by transforming growth factor-beta. Huang, R., Rosenbach, M., Vaughn, R., Provvedini, D., Rebbe, N., Hickman, S., Goding, J., Terkeltaub, R. J. Clin. Invest. (1994) [Pubmed]
  34. Monocyte chemoattractant protein-1 (MCP-1) expression in human articular cartilage. Induction by peptide regulatory factors and differential effects of dexamethasone and retinoic acid. Villiger, P.M., Terkeltaub, R., Lotz, M. J. Clin. Invest. (1992) [Pubmed]
  35. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. Hunziker, E.B., Wagner, J., Zapf, J. J. Clin. Invest. (1994) [Pubmed]
 
WikiGenes - Universities