Intraneuronal guanylyl-imidodiphosphate injection mimics long-term synaptic hyperpolarization in Aplysia.
The phosphodiesterase (3':5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17) inhibitor thepohylline enhances both the amplitude and duration of a long-lasting synaptic hyperpolarization in identified neuron R15 in Aplysia californica. Intraneuronal injection into R15 of glanylyl-imidodiphosphate, an adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activator, results in a deep and long-lasting hyperpolarization of the cell, similar to that produced by synaptic stimulation. Biochemical analysis confirms that guanylyl-imidodiphosphate activates adenylate cyclase in Aplysia californica nervous tissue, without affecting phosphodiesterase activity. These observations suggest that adenosine 3':5'-cyclic monophosphate plays a role in long-lasting synaptic inhibition and are consistent with a post-synaptic site of action for adenosine 3':5'-cyclic monophosphate.[1]References
- Intraneuronal guanylyl-imidodiphosphate injection mimics long-term synaptic hyperpolarization in Aplysia. Treistman, S.N., Levitan, I.B. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg