The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

MolMap_000068     [[[5-(2-amino-6-oxo-3H-purin- 9-yl)-3,4...

Synonyms: AR-1D8729, AC1L19YW, AC1Q6S3W, L001001
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of guanylyl imidodiphosphate

 

High impact information on guanylyl imidodiphosphate

  • To test this idea electrophysiologically, we have injected purified GTP-binding protein that was binding a hydrolysis-resistant analogue of GTP, guanylyl imidodiphosphate (p(NH)ppG), termed Gp(NH)ppG, as well as partially purified PDE, into toad rod outer segments while recording membrane voltage [5].
  • The squid giant synapse was used to test the hypothesis that guanosine-5'-triphosphate (GTP)-binding proteins regulate the local distribution of synaptic vesicles within nerve terminals [6].
  • Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins [7].
  • Polymerization of tubulin by Gmp(CH2)pp is neither prevented nor reversed by concentrations of calcium (2 mM) that can either prevent microtubule assembly or disrupt already formed microtubules if the nucleotide used is GTP or guanylyl imidodiphosphate [8].
  • Biochemical analysis confirms that guanylyl-imidodiphosphate activates adenylate cyclase in Aplysia californica nervous tissue, without affecting phosphodiesterase activity [9].
 

Biological context of guanylyl imidodiphosphate

 

Anatomical context of guanylyl imidodiphosphate

  • Choleragen-catalyzed inhibition of GTPase and [32P]ADP-ribosylation of the 39-kDa protein required guanylyl imidodiphosphate and did not occur in dark ROS membranes [15].
  • The guanylyl imidodiphosphate-activated state of turkey erythrocyte cyclase can be reversed to the basal state by the simultaneous action of beta-agonists and GTP [16].
  • By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity [17].
  • BACKGROUND: Halothane is an effective bronchodilator and inhibits airway smooth muscle contraction in part by inhibiting intracellular signaling pathways activated by the M2 muscarinic receptor and its cognate inhibitory heterotrimeric guanosine-5'-triphosphate (GTP)-binding protein (G protein), Gi [18].
  • Autoradiographic studies were performed in the presence and absence of 10 microM Gpp(NH)p. Binding in D2 containing regions, such as the caudate-putamen, was completely inhibited by guanylyl-imidodiphosphate although binding in D3 containing areas, such as the islands of Calleja, was unaffected [19].
 

Associations of guanylyl imidodiphosphate with other chemical compounds

 

Gene context of guanylyl imidodiphosphate

 

Analytical, diagnostic and therapeutic context of guanylyl imidodiphosphate

References

  1. Human chorionic gonadotropin-induced heterologous desensitization of adenylyl cyclase from highly luteinized rat ovaries: attenuation of regulatory N component activity. Kirchick, H.J., Iyengar, R., Birnbaumer, L. Endocrinology (1983) [Pubmed]
  2. A pertussis toxin-sensitive mechanism of endothelin action in porcine coronary artery smooth muscle. Kasuya, Y., Takuwa, Y., Yanagisawa, M., Masaki, T., Goto, K. Br. J. Pharmacol. (1992) [Pubmed]
  3. Phosphorylation of glucose by a guanosine-5'-triphosphate (GTP)-dependent glucokinase in Fibrobacter succinogenes subsp. succinogenes S85. Glass, T.L., Sherwood, J.S. Arch. Microbiol. (1994) [Pubmed]
  4. Alternation of Na(+)-Ca2+ exchange in rat cardiac sarcolemmal membranes during different phases of sepsis. Wang, X., Yang, J., Dong, L., Pang, Y., Su, J., Tang, C., Liu, N. Chin. Med. J. (2000) [Pubmed]
  5. Injection of GTP-binding protein or cyclic GMP phosphodiesterase hyperpolarizes retinal rods. Clack, J.W., Oakley, B., Stein, P.J. Nature (1983) [Pubmed]
  6. A functional role for GTP-binding proteins in synaptic vesicle cycling. Hess, S.D., Doroshenko, P.A., Augustine, G.J. Science (1993) [Pubmed]
  7. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. Stein, R., Pinkas-Kramarski, R., Sokolovsky, M. EMBO J. (1988) [Pubmed]
  8. Role of nucleotides in tubulin polymerization: effect of guanylyl 5'-methylenediphosphonate. Sandoval, I.V., MacDonald, E., Jameson, J.L., Cuatrecasas, P. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  9. Intraneuronal guanylyl-imidodiphosphate injection mimics long-term synaptic hyperpolarization in Aplysia. Treistman, S.N., Levitan, I.B. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  10. Intrinsically slow dynamic instability of HeLa cell microtubules in vitro. Newton, C.N., DeLuca, J.G., Himes, R.H., Miller, H.P., Jordan, M.A., Wilson, L. J. Biol. Chem. (2002) [Pubmed]
  11. Extracellular guanosine-5'-triphosphate modulates myogenesis via intermediate Ca(2+)-activated K+ currents in C2C12 mouse cells. Pietrangelo, T., Fioretti, B., Mancinelli, R., Catacuzzeno, L., Franciolini, F., Fanò, G., Fulle, S. J. Physiol. (Lond.) (2006) [Pubmed]
  12. Characterization of metabotropic glutamate receptors coupled to a pertussis toxin sensitive G-protein in bovine brain coated vesicles. Martín, M., Sanz, J.M., Cubero, A. FEBS Lett. (1993) [Pubmed]
  13. Regional distribution of guanine nucleotide-sensitive and guanine nucleotide-insensitive vasoactive intestinal peptide receptors in rat brain. Hill, J.M., Harris, A., Hilton-Clarke, D.I. Neuroscience (1992) [Pubmed]
  14. Cloning and analysis of expression of Mx cDNA in Japanese flounder, Paralichthys olivaceus. Lee, J.Y., Hirono, I., Aoki, T. Dev. Comp. Immunol. (2000) [Pubmed]
  15. Inhibition of bovine rod outer segment GTPase by Bordetella pertussis toxin. Watkins, P.A., Moss, J., Burns, D.L., Hewlett, E.L., Vaughan, M. J. Biol. Chem. (1984) [Pubmed]
  16. The reversal of the Gpp(NH)p-activated state of adenylate cyclase by GTP and hormone is by the "collision coupling" mechanism. Arad, H., Rimon, G., Levitzki, A. J. Biol. Chem. (1981) [Pubmed]
  17. Adenylate cyclase, guanylate cyclase and cyclic nucleotide phosphodiesterases of guinea-pig cardiac sarcolemma. St Louis, P.J., Sulakhe, P.V. Biochem. J. (1976) [Pubmed]
  18. Effect of halothane on galphai-3 and its coupling to the M2 muscarinic receptor. Jin, F., Wang, S., Spencer, J.D., Penheiter, S.G., Streiff, J.H., Penheiter, A.R., Warner, D.O., Jones, K.A. Anesthesiology (2005) [Pubmed]
  19. [3H]-quinelorane binds to D2 and D3 dopamine receptors in the rat brain. Gackenheimer, S.L., Schaus, J.M., Gehlert, D.R. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  20. Decreased striatal dopamine D1 receptor-stimulated adenylyl cyclase activity in human methamphetamine users. Tong, J., Ross, B.M., Schmunk, G.A., Peretti, F.J., Kalasinsky, K.S., Furukawa, Y., Ang, L.C., Aiken, S.S., Wickham, D.J., Kish, S.J. The American journal of psychiatry. (2003) [Pubmed]
  21. Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: effects on apparent agonist affinities. Sleight, A.J., Stam, N.J., Mutel, V., Vanderheyden, P.M. Biochem. Pharmacol. (1996) [Pubmed]
  22. Halothane does not inhibit the functional coupling between the beta2-adrenergic receptor and the Galphas heterotrimeric G protein. Hayashi, M., Penheiter, S.G., Nakayama, T., Penheiter, A.R., Warner, D.O., Jones, K.A. Anesthesiology (2006) [Pubmed]
  23. Reciprocal modulation of agonist and antagonist binding to A1 adenosine receptors by guanine nucleotides is mediated via a pertussis toxin-sensitive G protein. Ramkumar, V., Stiles, G.L. J. Pharmacol. Exp. Ther. (1988) [Pubmed]
  24. Dual effects of ATP on phosphatidylinositol breakdown in rat hepatocyte membranes. Ibarrondo, J., Marino, A., Guillon, G., Trueba, M., Macarulla, J.M. Cell. Signal. (1991) [Pubmed]
  25. Assignment of a gene that determines erythrocytic guanosine-5'-triphosphate concentration (Gtpc) to mouse chromosome 9. Jenuth, J.P., Fung, E., Snyder, F.F. Genome (1994) [Pubmed]
  26. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains. Zhang, B., Wang, Z.X., Zheng, Y. J. Biol. Chem. (1997) [Pubmed]
  27. A new, highly selective CCK-B receptor radioligand ([3H][N-methyl-Nle28,31]CCK26-33): evidence for CCK-B receptor heterogeneity. Knapp, R.J., Vaughn, L.K., Fang, S.N., Bogert, C.L., Yamamura, M.S., Hruby, V.J., Yamamura, H.I. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  28. Beyond vasodilation: the antioxidant effect of adrenomedullin in Dahl salt-sensitive rat aorta. Cao, Y.N., Kuwasako, K., Kato, J., Yanagita, T., Tsuruda, T., Kawano, J., Nagoshi, Y., Chen, A.F., Wada, A., Suganuma, T., Eto, T., Kitamura, K. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  29. In vitro synthesis, phosphorylation, and localization on 48 S initiation complexes of human protein synthesis initiation factor 4E. Hiremath, L.S., Hiremath, S.T., Rychlik, W., Joshi, S., Domier, L.L., Rhoads, R.E. J. Biol. Chem. (1989) [Pubmed]
  30. The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Binns, D.D., Helms, M.K., Barylko, B., Davis, C.T., Jameson, D.M., Albanesi, J.P., Eccleston, J.F. Biochemistry (2000) [Pubmed]
 
WikiGenes - Universities