The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Total synthesis of epothilones B and D: stannane equivalents for beta-keto ester dianions.

Studies leading to a total synthesis of epothilones B and D are described. The overall synthetic plan was based on late-stage fragment assembly of two segments representing C(1)-C(9) and C(10)-C(21) of the structure. The C(1)-C(9) fragment was prepared by elaboration of commercially available (2R)-3-hydroxy-2-methylpropanoate at both ends of the three-carbon unit. Introduction of carbons 1-4 containing the gem-dimethyl unit was achieved in a convergent manner using a diastereoselective addition of a stannane equivalent of a beta-keto ester dianion. An enantioselective addition of such a stannane equivalent for a beta-keto ester dianion was also used to fashion one version of the C(10)-C(21) subunit; however, the fragment assembly (using bimolecular esterification followed by ring-closing metathesis) with this subunit failed. Therefore, fragment assembly was achieved using a Wittig reaction; this was followed by macrolactonization to close the macrocycle. The C(10)-C(21) subunit needed for this approach was prepared in an efficient manner using the Corey-Kim reaction as a key element. Other key reactions in the synthesis include a stereoselective SmI(2) reduction of a beta-hydroxy ketone and a critical opening of a valerolactone with aniline which required extensive investigation.[1]

References

  1. Total synthesis of epothilones B and D: stannane equivalents for beta-keto ester dianions. Keck, G.E., Giles, R.L., Cee, V.J., Wager, C.A., Yu, T., Kraft, M.B. J. Org. Chem. (2008) [Pubmed]
 
WikiGenes - Universities