The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity.

Pseudomonas aeruginosa exoenzyme S ADP-ribosylates several GTP-binding proteins of apparent Mr = 23,000-25,000. Exoenzyme S absolutely requires a soluble eukaryotic protein, which we have named FAS (Factor Activating exoenzyme S), in order to ADP-ribosylate all substrates. The rate of ADP-ribosylation of all exoenzyme S substrates increases linearly with time and with the FAS concentration. FAS is wide-spread in eukaryotes but appears to be absent from prokaryotes. We have estimated the molecular mass of the protein to be approximately 29,000 daltons and its pI to be 4.3-4. 5. Several bacterial toxins share this sort of requirement for the presence of a eukaryotic protein for enzymic activity. In particular, FAS resembles ADP-ribosylation factor, a 21,000-dalton GTP-binding protein which performs an analogous function for cholera toxin. However, we can find no evidence that FAS binds GTP. In the presence of FAS, exoenzyme S ADP-ribosylates several proteins in lysates of P. aeruginosa. The requirement for a eukaryotic protein for enzymic activity, which is common to several bacterial toxins, may be a device to identify the eukaryotic environment and to ensure that the enzymes cannot function within and harm the toxin-producing bacteria.[1]

References

  1. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. Coburn, J., Kane, A.V., Feig, L., Gill, D.M. J. Biol. Chem. (1991) [Pubmed]
 
WikiGenes - Universities