The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor.

Determination of the amino acid sequence of beef pancreas tryptophanyl-tRNA synthetase was undertaken through both cDNA and direct peptide sequencing. A full-length cDNA clone containing a 475 amino acid open reading frame was obtained. The molecular mass of the corresponding peptide chain, 53,728 Da, was in agreement with that of beef tryptophanyl-tRNA synthetase, as determined by physicochemical methods (54 kDa). Expression of this clone in Escherichia coli led to tryptophanyl-tRNA synthetase activity in cell extracts. The open reading frame included two sequences analogous to the consensus sequences, HIGH and KMSKS, found in class I aminoacyl-tRNA synthetases. The homology with prokaryotic and yeast mitochondrial tryptophanyl-tRNA synthetases was low and was limited to the regions of the consensus sequences. However, a 90% homology was observed with the recently described rabbit peptide chain release factor (eRF) [Lee et al. (1990) Proc. Natl. Acad. Sci. 87, 3508-3512]. Such a strong homology may reveal a new group of genes deriving from a common ancestor, the products of which could be involved in tRNA aminoacylation (tryptophanyl-tRNA synthetase) or translation termination (eRF).[1]

References

  1. A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor. Garret, M., Pajot, B., Trézéguet, V., Labouesse, J., Merle, M., Gandar, J.C., Benedetto, J.P., Sallafranque, M.L., Alterio, J., Gueguen, M. Biochemistry (1991) [Pubmed]
 
WikiGenes - Universities