The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Transfer RNA Aminoacylation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Transfer RNA Aminoacylation

 

High impact information on Transfer RNA Aminoacylation

  • Kinetic analysis of heterodimers formed between variant enzymes with defective tyrosine activation or tRNA aminoacylation shows that a molecule of tRNATyr interacts with the N-terminal region of one subunit and the C-terminal region of the other subunit in the dimer [3].
  • These findings indicate that ProRS and LeuRS associate in M. thermautotrophicus and suggest that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS [4].
  • They behave as alpha2 dimers and display catalytic parameters in the tRNA aminoacylation reaction identical to those determined for the native, complex-associated form of aspartyl-tRNA synthetase isolated from rat liver [5].
  • However, three acceptor stem derivatives (tRNA(Trp)/C1.G72, tRNA(Trp)/C2.G71, and tRNA(Trp)/A3.U70) required overexpression for growth at 42 degrees C. Northern analysis of these derivatives following acid/urea gel electrophoresis showed no defects in tRNA aminoacylation at the nonpermissive temperature [6].
  • The purified glutamyl-tRNA synthetase was identified as the chloroplast enzyme by its tRNA charging specificity [7].
 

Biological context of Transfer RNA Aminoacylation

 

Anatomical context of Transfer RNA Aminoacylation

 

Associations of Transfer RNA Aminoacylation with chemical compounds

 

Gene context of Transfer RNA Aminoacylation

References

  1. Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Romby, P., Brunel, C., Caillet, J., Springer, M., Grunberg-Manago, M., Westhof, E., Ehresmann, C., Ehresmann, B. Nucleic Acids Res. (1992) [Pubmed]
  2. Recently characterised autoantibodies and their clinical significance. Sturgess, A. Australian and New Zealand journal of medicine. (1992) [Pubmed]
  3. Construction of heterodimer tyrosyl-tRNA synthetase shows tRNATyr interacts with both subunits. Carter, P., Bedouelle, H., Winter, G. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  4. Association between Archaeal prolyl- and leucyl-tRNA synthetases enhances tRNA(Pro) aminoacylation. Praetorius-Ibba, M., Rogers, T.E., Samson, R., Kelman, Z., Ibba, M. J. Biol. Chem. (2005) [Pubmed]
  5. Expression of rat aspartyl-tRNA synthetase in Saccharomyces cerevisiae. Role of the NH2-terminal polypeptide extension on enzyme activity and stability. Agou, F., Waller, J.P., Mirande, M. J. Biol. Chem. (1996) [Pubmed]
  6. Analysis of acceptor stem base pairing on tRNA(Trp) aminoacylation and function in vivo. Pak, M., Willis, I.M., Schulman, L.H. J. Biol. Chem. (1994) [Pubmed]
  7. Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. Chen, M.W., Jahn, D., Schön, A., O'Neill, G.P., Söll, D. J. Biol. Chem. (1990) [Pubmed]
  8. Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity. Graindorge, J.S., Senger, B., Tritch, D., Simos, G., Fasiolo, F. Biochemistry (2005) [Pubmed]
  9. Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNA(Tyr) are conserved but expressed differently. Fechter, P., Rudinger-Thirion, J., Tukalo, M., Giegé, R. Eur. J. Biochem. (2001) [Pubmed]
  10. Histidyl-tRNA synthetase from Salmonella typhimurium: specificity in the binding of histidine analogues. Lepore, G.C., Di Natale, P., Guarini, L., De Lorenzo, F. Eur. J. Biochem. (1975) [Pubmed]
  11. Ribosome bypassing at serine codons as a test of the model of selective transfer RNA charging. Lindsley, D., Bonthuis, P., Gallant, J., Tofoleanu, T., Elf, J., Ehrenberg, M. EMBO Rep. (2005) [Pubmed]
  12. Effects of lymphocyte activation on transfer RNAs. Rasmussen, K., Whelly, S., Barker, K. Biochem. Biophys. Res. Commun. (1991) [Pubmed]
  13. Isolation and characterization of an estrogen-regulated ribosome-associated inactivator of tRNA aminoacylation in the uterus. Whelly, S.M., Rasmussen, K.R., Skudlarek, J., Barker, K.L. Biochim. Biophys. Acta (1991) [Pubmed]
  14. Deletion analysis in the amino-terminal extension of methionyl-tRNA synthetase from Saccharomyces cerevisiae shows that a small region is important for the activity and stability of the enzyme. Walter, P., Weygand-Durasevic, I., Sanni, A., Ebel, J.P., Fasiolo, F. J. Biol. Chem. (1989) [Pubmed]
  15. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication. Lazard, M., Agou, F., Kerjan, P., Mirande, M. J. Mol. Biol. (2000) [Pubmed]
  16. Mutational analysis of a leucine heptad repeat motif in a class I aminoacyl-tRNA synthetase. Ohannesian, D.W., Oh, J., Hou, Y.M. Biochemistry (1996) [Pubmed]
  17. Synthesis of cysteinyl-tRNA(Cys) by a genome that lacks the normal cysteine-tRNA synthetase. Lipman, R.S., Sowers, K.R., Hou, Y.M. Biochemistry (2000) [Pubmed]
  18. Complementation of yeast Arc1p by the p43 component of the human multisynthetase complex does not require its association with yeast MetRS and GluRS. Golinelli-Cohen, M.P., Zakrzewska, A., Mirande, M. J. Mol. Biol. (2004) [Pubmed]
  19. The tRNA-interacting factor p43 associates with mammalian arginyl-tRNA synthetase but does not modify its tRNA aminoacylation properties. Guigou, L., Shalak, V., Mirande, M. Biochemistry (2004) [Pubmed]
  20. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: identification of amino acid residues labeled by periodate-oxidized tRNA(fMet) molecules having modified lengths at the 3'-acceptor end. Hountondji, C., Schmitter, J.M., Beauvallet, C., Blanquet, S. Biochemistry (1990) [Pubmed]
  21. A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor. Garret, M., Pajot, B., Trézéguet, V., Labouesse, J., Merle, M., Gandar, J.C., Benedetto, J.P., Sallafranque, M.L., Alterio, J., Gueguen, M. Biochemistry (1991) [Pubmed]
  22. The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for its activity. Li, T., Guo, N., Xia, X., Wang, E.D., Wang, Y.L. Biochemistry (1999) [Pubmed]
 
WikiGenes - Universities