The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells.

The FOXO1 transcription factor orchestrates the regulation of genes involved in the apoptotic response, cell cycle checkpoints, and cellular metabolism. FOXO1 is a putative tumor suppressor, and the expression of this gene is dysregulated in some cancers, including prostate and endometrial cancers. However, the molecular mechanism resulting in aberrant expression of human FOXO1 in cancer cells is poorly understood. We show here that FOXO1 mRNA is down-regulated in breast tumor samples as compared with normal breast tissue. Silencing of the microRNA processing enzymes, Drosha and Dicer, led to an increase in FOXO1 expression. We also identified functional and specific microRNA target sites in the FOXO1 3'-untranslated region for miR-27a, miR-96, and miR-182, microRNAs that have previously been linked to oncogenic transformation. The three microRNAs, miR-27a, miR-96 and miR-182, were observed to be highly expressed in MCF-7 breast cancer cells, in which the level of FOXO1 protein is very low. Antisense inhibitors to each of these microRNAs led to a significant increase in endogenous FOXO1 expression and to a decrease in cell number in a manner that was blocked by FOXO1 siRNA. Overexpression of FOXO1 resulted in decreased cell viability because of inhibition of cell cycle traverse and induction of cell death. We have identified a novel mechanism of FOXO1 regulation, and targeting of FOXO1 by microRNAs may contribute to transformation or maintenance of an oncogenic state in breast cancer cells.[1]


WikiGenes - Universities