The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption.

Large-pore phenyl-bridged periodic mesoporous organosilicas (PMOs) were facilely synthesized by evaporation-induced self-assembly of 1,4-bis(triethoxysily)benzene and triblock copolymer Pluronic F127 as a template under acid conditions combined with a mixed-solvothermal treatment. The ordered PMOs exhibit large uniform mesopores of approximately 9.9 nm in diameter after calcination at 350 degrees C in a nitrogen atmosphere. The mesoporous phenyl-bridged organosilica products have an ordered hexagonal mesostructure with space group p6mm. N(2) adsorption/desorption isotherms reveal imperfect mesopore channels with high surface areas (up to 1150 m(2)/g) and thick pore walls (up to 7.7 nm). The mesopores can be expanded with the decrease of acidity, as well as the increase of Pluronic F127 content. A mixed-solvothermal treatment in N,N-dimethylformamide (DMF) and water at 100 degrees C was first used to improve the periodicity of the mesopore walls, as well as increase the wall thickness. The composites exhibit efficient adsorption capacities (2.06 mmol g(-1)) for benzene, suggesting a potential adsorbent for removal of volatile organic compounds. The EISA approach combined with the mixed-solvothermal treatment provides important insights into the development of large-pore PMOs by using long-chain organosilanes, and further demonstrates the ability to fabricate materials with thick walls.[1]

References

 
WikiGenes - Universities