The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Periodicity


Psychiatry related information on Periodicity

  • These include the localization of a gene for circadian periodicity in the mouse, gene knockouts of serotonin receptors, and the development of a transgenic model of Alzheimer's disease [6].
  • In D. melanogaster, three allelic per mutations have been isolated which affect the periodicity of the circadian oscillators affecting both eclosion and locomotor activity [Konopka, R. & Benzer S. (1971) Proc. Natl. Acad. Sci. USA 68, 2112-2116] [7].
  • We suggest that histamine, which participates in the control of vigilance, sleep, and wakefulness, as well as in the modulation of circadian rhythmicity, may play a role in the development of sleep disturbances in rats with PCA [8].
  • Abnormal adrenocortical regulation has been reported in patients with endogenous depression, including excessive cortisol production with loss of circadian periodicity and decreased suppression by dexamethasone [9].
  • Placebo had no effect on his cycles, amitriptyline lessened the amplitude of depression on "bad days" but did not effect the 48-hour periodicity, whereas lithium carbonate therapy terminated both affective symptoms and the cycle itself [10].

High impact information on Periodicity

  • The double mutant has normal vision but is defective in mPer1 induction by light and lacks molecular and behavioral rhythmicity in constant darkness [11].
  • The HAT activity of CLOCK is essential to rescue circadian rhythmicity and activation of clock genes in Clock mutant cells [12].
  • These data demonstrate that CRY-mediated repression of the CLOCK/BMAL1 complex activity is required for maintenance of circadian rhythmicity and provide formal proof that transcriptional feedback is required for mammalian clock function [13].
  • These results demonstrate that SCN hierarchical dominance can compensate for severe intrinsic genetic defects in peripheral clocks, but cannot induce rhythmicity in clock-defective tissues [14].
  • The Clock mutation lengthens periodicity and reduces amplitude of circadian rhythms in mice [15].

Chemical compound and disease context of Periodicity


Biological context of Periodicity

  • Micrococcal nuclease digestion of nuclei cleaves telomeres with a uniform 157 bp periodicity, producing soluble particles that sediment in sucrose gradients exactly like oligonucleosomes [21].
  • Much of the order and timing of the cell cycle events may involve the progressive activation of Cdc28 kinase activities associated with different cyclins, whose periodicity during the cycle is determined by both transcriptional and post-transcriptional controls [22].
  • Here we show that inactivation of the mCry2 gene in mPer2 mutant mice restores circadian rhythmicity and normal clock gene expression patterns [23].
  • RESULTS: Antral migrating motor complex periodicity and fasting and fed motility indices, not different in the groups under control conditions, decreased similarly in nonsmokers and smokers with nicotine [24].
  • The periodicity of micrococcal nuclease-sensitive sites in the linker regions associated with histone H1 or H5 is 10.4 base pairs, suggesting that the spatial organization of the linker region in the higher-order structure of chromatin is similar to that in isolated nucleosomes [25].

Anatomical context of Periodicity

  • We have identified and characterized c-hairy1, an avian homolog of the Drosophila segmentation gene, hairy. c-hairy1 is strongly expressed in the presomitic mesoderm, where its mRNA exhibits cyclic waves of expression whose temporal periodicity corresponds to the formation time of one somite (90 min) [26].
  • Recent evidence in vertebrates suggests that the mammalian suprachiasmatic nucleus and the avian pineal gland contain clocks that affect the rhythmicity of indoleamine metabolism [27].
  • GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity [28].
  • The conceptus within the uterus, therefore, is believed to produce a substance or substances which directly or indirectly prolong the lifespan of the corpus luteum and prevent a return to ovarian cyclicity [29].
  • In addition, similarities between the PAS-domain regions of molecules involved in light perception and circadian rhythmicity in several organisms suggest an evolutionary link between ancient photoreceptor proteins and more modern proteins required for circadian oscillation [30].

Associations of Periodicity with chemical compounds

  • Abnormal circadian periodicity of plasma cortisol concentrations persisted [31].
  • Here we show that loss of the PAS protein MOP3 (also known as BMAL1) in mice results in immediate and complete loss of circadian rhythmicity in constant darkness [32].
  • This may be a consequence of functionally important, long-range amino acid or oligopeptide periodicities (for example, Asp x Ser or Glu x Ser corresponding to Hinf I sites) in the BRc protein product, in conjunction with preferential use of certain synonymous codons [33].
  • Roles of circadian rhythmicity and sleep in human glucose regulation [34].
  • The results suggest that melatonin is involved in the physiological control of circadian rhythmicity in sparrows [35].

Gene context of Periodicity

  • The loss of Acf1 results in a decrease in the periodicity of nucleosome arrays as well as a shorter nucleosomal repeat length in bulk chromatin in embryos [36].
  • Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons [37].
  • Critically, daily application of a VPAC(2) agonist restored rhythmicity and synchrony to VIP(-/-) SCN neurons, but not to Vipr2(-/-) neurons [37].
  • The elimination of cyclin E during S and G(2) phases is impaired in Skp2(-/-) cells, resulting in loss of cyclin E periodicity [38].
  • Utilizing yeast strains containing promoter mutations, we demonstrate that transcription of the HSP82 gene causes nucleosomes toward the 3'-end to become DNase I sensitive and 'split' into structures that exhibit a 'half-nucleosomal' cleavage periodicity [39].

Analytical, diagnostic and therapeutic context of Periodicity


  1. HERG, a human inward rectifier in the voltage-gated potassium channel family. Trudeau, M.C., Warmke, J.W., Ganetzky, B., Robertson, G.A. Science (1995) [Pubmed]
  2. Mediation of hyperglycemia-evoked gastric slow-wave dysrhythmias by endogenous prostaglandins. Hasler, W.L., Soudah, H.C., Dulai, G., Owyang, C. Gastroenterology (1995) [Pubmed]
  3. Interaction of fluorescently-labeled contractile proteins with the cytoskeleton in cell models. Sanger, J.W., Mittal, B., Sanger, J.M. J. Cell Biol. (1984) [Pubmed]
  4. Long-term microclimatic stress causes rapid adaptive radiation of kaiABC clock gene family in a cyanobacterium, Nostoc linckia, from "Evolution Canyons" I and II, Israel. Dvornyk, V., Vinogradova, O., Nevo, E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Wang, Z., Day, N., Trifillis, P., Kiledjian, M. Mol. Cell. Biol. (1999) [Pubmed]
  6. Mapping genes for psychiatric disorders and behavioral traits. McInnes, L.A., Freimer, N.B. Curr. Opin. Genet. Dev. (1995) [Pubmed]
  7. Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Kyriacou, C.P., Hall, J.C. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  8. Brain histamine levels and neocortical slow-wave activity in rats with portacaval anastomosis. Lozeva, V., Valjakka, A., Anttila, E., MacDonald, E., Hippeläinen, M., Tuomisto, L. Hepatology (1999) [Pubmed]
  9. Adrenocortical function and plasma norepinephrine in normal human subjects. Sotsky, S.M., Lake, C.R., Goodwin, F.K. Biol. Psychiatry (1981) [Pubmed]
  10. The effects of amitriptyline and lithium on a patient with 48-hour recurrent depressions. Gelenberg, A.J., Klerman, G.L. J. Nerv. Ment. Dis. (1978) [Pubmed]
  11. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Sancar, A. Annu. Rev. Biochem. (2000) [Pubmed]
  12. Circadian Regulator CLOCK Is a Histone Acetyltransferase. Doi, M., Hirayama, J., Sassone-Corsi, P. Cell (2006) [Pubmed]
  13. Feedback repression is required for mammalian circadian clock function. Sato, T.K., Yamada, R.G., Ukai, H., Baggs, J.E., Miraglia, L.J., Kobayashi, T.J., Welsh, D.K., Kay, S.A., Ueda, H.R., Hogenesch, J.B. Nat. Genet. (2006) [Pubmed]
  14. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Pando, M.P., Morse, D., Cermakian, N., Sassone-Corsi, P. Cell (2002) [Pubmed]
  15. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Low-Zeddies, S.S., Takahashi, J.S. Cell (2001) [Pubmed]
  16. Glucocorticoid metabolism and adrenocortical reactivity to ACTH in myotonic dystrophy. Johansson A, n.u.l.l., Andrew, R., Forsberg, H., Cederquist, K., Walker, B.R., Olsson, T. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  17. Prepubertal testosterone treatment of female rats: defeminization of behavioral and endocrine function in adulthood. Bloch, G.J., Mills, R., Gale, S. Neuroscience and biobehavioral reviews. (1995) [Pubmed]
  18. Periodic remission in Cushing's disease with paradoxical dexamethasone response: an expression of periodic hormonogenesis. Liberman, B., Wajchenberg, B.L., Tambascia, M.A., Mesquita, C.H. J. Clin. Endocrinol. Metab. (1976) [Pubmed]
  19. Synchronization by low-amplitude light-dark cycles of 24-hour pineal and plasma melatonin rhythms of hatchling European starlings (Sturnus vulgaris). Gwinner, E., Zeman, M., Klaassen, M. J. Pineal Res. (1997) [Pubmed]
  20. Effects of hyperprolactinemia on estrous cyclicity, serum luteinizing hormone, prolactin, estradiol, and progesterone concentrations, and catecholamine activity in microdissected brain areas. Wise, P.M. Endocrinology (1986) [Pubmed]
  21. Nucleosomal organization of telomere-specific chromatin in rat. Makarov, V.L., Lejnine, S., Bedoyan, J., Langmore, J.P. Cell (1993) [Pubmed]
  22. Control of the yeast cell cycle by the Cdc28 protein kinase. Nasmyth, K. Curr. Opin. Cell Biol. (1993) [Pubmed]
  23. Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Oster, H., Yasui, A., van der Horst, G.T., Albrecht, U. Genes Dev. (2002) [Pubmed]
  24. Nicotine effects on prostaglandin-dependent gastric slow wave rhythmicity and antral motility in nonsmokers and smokers. Kohagen, K.R., Kim, M.S., McDonnell, W.M., Chey, W.D., Owyang, C., Hasler, W.L. Gastroenterology (1996) [Pubmed]
  25. Regulation of the higher-order structure of chromatin by histones H1 and H5. Allan, J., Cowling, G.J., Harborne, N., Cattini, P., Craigie, R., Gould, H. J. Cell Biol. (1981) [Pubmed]
  26. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquié, O. Cell (1997) [Pubmed]
  27. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Besharse, J.C., Iuvone, P.M. Nature (1983) [Pubmed]
  28. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Wagner, S., Castel, M., Gainer, H., Yarom, Y. Nature (1997) [Pubmed]
  29. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Imakawa, K., Anthony, R.V., Kazemi, M., Marotti, K.R., Polites, H.G., Roberts, R.M. Nature (1987) [Pubmed]
  30. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Crosthwaite, S.K., Dunlap, J.C., Loros, J.J. Science (1997) [Pubmed]
  31. Cyproheptadine-induced remission of Cushing's disease. Krieger, D.T., Amorosa, L., Linick, F. N. Engl. J. Med. (1975) [Pubmed]
  32. Mop3 is an essential component of the master circadian pacemaker in mammals. Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendenin, C., Radcliffe, L.A., Hogenesch, J.B., Simon, M.C., Takahashi, J.S., Bradfield, C.A. Cell (2000) [Pubmed]
  33. Periodicities and tandem repeats in a Balbiani ring gene. Wobus, U., Bäumlein, H., Panitz, R., Serfling, E., Kafatos, F.C. Cell (1980) [Pubmed]
  34. Roles of circadian rhythmicity and sleep in human glucose regulation. Van Cauter, E., Polonsky, K.S., Scheen, A.J. Endocr. Rev. (1997) [Pubmed]
  35. Melatonin: effects on the circadian locomotor rhythm of sparrows. Turek, F.W., McMillan, J.P., Menaker, M. Science (1976) [Pubmed]
  36. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Fyodorov, D.V., Blower, M.D., Karpen, G.H., Kadonaga, J.T. Genes Dev. (2004) [Pubmed]
  37. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J., Herzog, E.D. Nat. Neurosci. (2005) [Pubmed]
  38. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. Nakayama, K., Nagahama, H., Minamishima, Y.A., Matsumoto, M., Nakamichi, I., Kitagawa, K., Shirane, M., Tsunematsu, R., Tsukiyama, T., Ishida, N., Kitagawa, M., Nakayama, K., Hatakeyama, S. EMBO J. (2000) [Pubmed]
  39. Transcription-induced nucleosome 'splitting': an underlying structure for DNase I sensitive chromatin. Lee, M.S., Garrard, W.T. EMBO J. (1991) [Pubmed]
  40. The periodic association of MAP2 with brain microtubules in vitro. Kim, H., Binder, L.I., Rosenbaum, J.L. J. Cell Biol. (1979) [Pubmed]
  41. Apolipoprotein E and alpha brain rhythms in mild cognitive impairment: a multicentric electroencephalogram study. Babiloni, C., Benussi, L., Binetti, G., Cassetta, E., Dal Forno, G., Del Percio, C., Ferreri, F., Ferri, R., Frisoni, G., Ghidoni, R., Miniussi, C., Rodriguez, G., Romani, G.L., Squitti, R., Ventriglia, M.C., Rossini, P.M. Ann. Neurol. (2006) [Pubmed]
  42. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Sujino, M., Masumoto, K.H., Yamaguchi, S., van der Horst, G.T., Okamura, H., Inouye, S.T. Curr. Biol. (2003) [Pubmed]
  43. Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated. Rhoads, D.B., Rosenbaum, D.H., Unsal, H., Isselbacher, K.J., Levitsky, L.L. J. Biol. Chem. (1998) [Pubmed]
  44. Pulsatile characteristics of spontaneous growth hormone (GH) concentration profiles in boys evaluated by an ultrasensitive immunoradiometric assay: evidence for ultradian periodicity of GH secretion. Goji, K. J. Clin. Endocrinol. Metab. (1993) [Pubmed]
WikiGenes - Universities