The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

An evolutionary change in the muscle lineage of an anural ascidian embryo is restored by interspecific hybridization with a urodele ascidian.

Anural ascidians do not develop into a conventional tailed larva with differentiated muscle cells, however, embryos of some anural ascidian species retain the ability to express acetylcholinesterase (AChE) in a vestigial muscle cell lineage. This study examines the number of AChE-positive cells that develop in the anural ascidian Molgula occulta relative to that in the closely related urodele (tailed) species, Molgula oculata. Histochemical assays showed that M. oculata embryos develop 36 to 38 AChE-positive cells, consistent with the number of tail muscle cells expressed in other urodele ascidians. In contrast, M. occulta embryos develop a mean of only 20 AChE-positive cells in their vestigial muscle lineage. Cleavage-arrested embryos of the anural species express AChE only in B-line blastomeres, showing that the vestigial muscle lineage cells are derived from the primary muscle lineage. Less than the expected number of AChE-positive B-line cells develop in cleavage-arrested anural embryos, however, implying that the allocation of primary muscle lineage cells is decreased. Eggs of the anural species can be fertilized with sperm of the urodele species resulting in the development of some larvae that contain a short tail and/or a brain melanocyte, specific features of urodele larvae. The typical urodele number of AChE-positive cells is restored in some of these hybrid embryos. Both primary and secondary muscle lineages are restored because cleavage-arrested hybrid embryos develop more AChE-positive cells in the B-line blastomeres and supernumerary AChE-positive cells in the A-line blastomeres. Hybrid embryos that develop the urodele complement of AChE-positive cells also form a tail and/or a brain melanocyte showing that restoration of muscle lineage cells is coupled to the development of other urodele features. AChE expression occurred in anural embryos with disorganized or dissociated blastomeres, indicating that AChE expression is determined autonomously. It is concluded that an evolutionary change in the allocation of larval muscle lineage cells occurs during development of the anural ascidian M. occulta which can be restored by interspecific hybridization with the urodele ascidian M. oculata.[1]


WikiGenes - Universities