The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Adenosine receptors and membrane microdomains.

Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors. The four adenosine receptor subtypes-A(1), A(2a), A(2b), A(3)-exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of G protein coupled receptor signaling at the level of protein-protein interactions as well as through signaling cross talk. With respect to adenosine receptors, the activation of one receptor subtype can have profound direct effects in one cell type but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of G protein coupled receptor signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling.[1]

References

  1. Adenosine receptors and membrane microdomains. Lasley, R.D. Biochim. Biophys. Acta (2011) [Pubmed]
 
WikiGenes - Universities