The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mechanisms of oxidative DNA damage induced by carcinogenic arylamines.

Most arylamines are pro-carcinogens, and require metabolic activation to yield ultimate carcinogen metabolites. O-Acetylation of the N-hydroxy form of an arylamine yields an acetoxyarylamine, which can form a highly reactive arylnitrenium ion, the ultimate metabolite responsible for DNA adduct formation. However, we demonstrate here that the N-hydroxy and nitroso forms of arylamines can also induce DNA damage, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesions, via reactive oxygen species formation. The N-hydroxy and nitroso derivatives of carcinogenic arylamines may contribute to the carcinogenic process through H2O2 formation. N-Hydroxy derivatives induce metal-mediated DNA damage, with remarkable enhancement by NADH. Nitroso derivatives induce NADH-dependent DNA damage in the presence of metal ions. Hydroxy derivatives of arylamines formed by enzymatic hydroxylation or as o- or p-aminophenols can also induce DNA damage in the presence of metal ions. The autoxidation of o-phenylenediamine and several arylamine metabolites is accelerated in the presence of SOD or manganese, resulting in the enhancement of metal-mediated DNA damage. The oxidative DNA damage induced by arylamine compounds may participate in chemical carcinogenesis, in addition to DNA adduct formation.[1]

References

  1. Mechanisms of oxidative DNA damage induced by carcinogenic arylamines. Murata, M., Kaw Anishi, S. Front. Biosci. (2011) [Pubmed]
 
WikiGenes - Universities