Mapping of a higher order protein-DNA complex: two kinds of long-range interactions in lambda attL.
To map the protein-protein and protein-DNA interactions involved in lambda site-specific recombination, Int cleavage assays with suicide substrates, nuclease protection patterns, gel retardation experiments, and quantitative Western blotting were applied to wild-type attL and attL mutants. The results lead to a model in which one IHF molecule bends the attL DNA and forms a higher order complex with the three bivalent Int molecules required for excisive recombination. It is proposed that each of the Int molecules binds in a unique manner: one bridges two DNA binding sites in cis, one is held via its high affinity amino-terminal DNA binding domain, and the third depends upon protein-protein interactions in addition to its low affinity carboxy-terminal DNA binding domain. This protein-DNA complex contains two unsatisfied DNA binding domains, each with a different sequence specificity, and is well suited to specific interactions with an appropriate recombination partner.[1]References
- Mapping of a higher order protein-DNA complex: two kinds of long-range interactions in lambda attL. Kim, S., Moitoso de Vargas, L., Nunes-Düby, S.E., Landy, A. Cell (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg