The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Paw inflammation model in dogs for preclinical pharmacokinetic/pharmacodynamic investigations of nonsteroidal anti-inflammatory drugs.

The goal of the present study was to develop and validate a new canine model of inflammation. The motivation was to make available a scientifically appropriate and ethically acceptable model to conduct pharmacokinetic/pharmacodynamic investigations for testing nonsteroidal anti-inflammatory drugs in dogs. A kaolin-induce paw inflammation model previously developed in cats was adapted to the dog. The paw inflammation developed within a few hours, reached maximum values 24 h and up to 3 days after kaolin administration, and then progressively resolved over 2 months. Five end points of clinical interest (body temperature, creeping time under a tunnel, paw withdrawal latency to a standardized thermal stimulus, lameness score, and vertical force developed during walking on a force plate) were measured regularly over the next 24 h and beyond to characterize the time development of the inflammation either in control conditions (placebo period) or after the administration of meloxicam (test period) according to a crossover design. Pharmacodynamic data were modeled using an indirect response pharmacokinetic/pharmacodynamic model. This model described three effects of meloxicam, namely, classic anti-inflammatory, analgesic, and antipyretic effects. The mean plasma meloxicam IC(50) values were 210 ng/ml for the antipyretic effect, 390 ng/ml for the analgesic effect, and 546 ng/ml for the vertical force exerted by the paw on the ground as measured by force plates. These in vivo IC(50) values require approximately 80 (antipyretic effect) to 90% (all other effects) cyclooxygenase-2 inhibition as calculated ex vivo whole-blood assay data.[1]

References

  1. Paw inflammation model in dogs for preclinical pharmacokinetic/pharmacodynamic investigations of nonsteroidal anti-inflammatory drugs. Jeunesse, E.C., Bargues, I.A., Toutain, C.E., Lacroix, M.Z., Letellier, I.M., Giraudel, J.M., Toutain, P.L. J. Pharmacol. Exp. Ther. (2011) [Pubmed]
 
WikiGenes - Universities