The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Role of instability in the cis action of the insertion sequence IS903 transposase.

An unusual subset of DNA-binding proteins, termed cis-acting proteins, has been shown to act preferentially at their site of synthesis; the transposases of several bacterial insertion sequences (ISs) fall into this class. The transposase of IS903 exhibits a strong preference for action in cis: complementation of defective transposons in trans occurs at less than 1%. Furthermore, transposition mediated by transposase acting in cis is extremely sensitive to the distance between the 3' end of the transposase gene and the nearest transposon inverted repeat; we find that an insertion of 1 kilobase of DNA reduces transposition to 1-2% of control levels. Here we show that there is a strong correlation between the stability of transposase and its ability to act in trans. We found that the wild-type transposase is a very unstable protein with a physical half-life of about 3 min. However, a transposase-beta-galactosidase fusion protein has a much greater half-life and can act equally well in cis or in trans. In addition, the native transposase is stabilized in lon- strains of Escherichia coli, and, in these protease-deficient strains, trans action of transposase is increased 10- to 100-fold. These results suggest that instability of the IS903 transposase is a major determinant of its cis action and that the La protease, product of the lon gene, is an important determinant of transposase instability.[1]

References

  1. Role of instability in the cis action of the insertion sequence IS903 transposase. Derbyshire, K.M., Kramer, M., Grindley, N.D. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
 
WikiGenes - Universities