The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

lacZ  -  beta-D-galactosidase

Escherichia coli UTI89

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of lacZ


Psychiatry related information on lacZ


High impact information on lacZ


Chemical compound and disease context of lacZ

  • A synthetic molecular conjugate, consisting of mannosylated polylysine that exploits endocytosis via the macrophage mannose receptor, was constructed and complexed to expression plasmids containing either the Photinus pyralis luciferase or Escherichia coli beta-galactosidase (lacZ) reporter genes [10].
  • In SOS-induced Escherichia coli, 97% of all methylene blue-induced mutations in the lacZ alpha gene of M13mp2 DNA are single-base substitutions opposite template guanines [11].
  • Using the bicistronic vector v alpha 22 beta gal alpha 4GT, which coexpresses both GT and the Escherichia coli lacZ marker gene, we further demonstrate an inverse correlation between the extent of vector expression in the dentate and the amount of CA3 damage resulting from the simultaneous delivery of kainic acid [12].
  • In a second strain (CSA15), the lacZ gene is fused to an operon encoding a transport system which displays features characteristic of the ABC group of transporters, and which has a very high level of identity to the ribose transport system from Escherichia coli [13].
  • The time required for transcription of the lacZ gene in Escherichia coli was determined during exponential growth and under conditions, when the bacterium was exposed to partial isoleucine starvation [14].

Biological context of lacZ


Anatomical context of lacZ


Associations of lacZ with chemical compounds

  • In PE-containing cells these kinetic parameters for TMG transport were reduced by an uncoupler to the level found with PE-deficient cells while an uncoupler reduced lactose uptake by PE-containing (lacZ) cells to below measureable levels [25].
  • The termination efficiencies with lambda-tR1 and the promoter proximal lacZ intragenic terminators were significantly higher with 0.1-0.2 M potassium glutamate as the major electrolyte than with the optimal concentrations of KCl (approximately 0.05 M) or potassium acetate (approximately 0.15 M) [26].
  • Using a 'lacZ fusion to the ttgG promoter, we show that the most efficient in vivo inducers were 1-naphthol, 2,3-dihydroxynaphthalene, 4-nitrotoluene, benzonitrile, and indole [27].
  • Quantitative analysis of specific pac mRNA and a lacZ fusion to the 5'-terminal region of the pac gene demonstrated that both phenylacetic acid induction and catabolite repression by glucose are involved, at the transcriptional level, in the regulation of the pac gene [28].
  • Five of these mutants expressed the cadA-lacZ fusion at both pH 5.8 and pH 7.6, but retained the requirement for the lysine signal while the other three mutants displayed pH independence at pH 5.8 but not at pH 7 [29].

Regulatory relationships of lacZ

  • We constructed B. subtilis mutants and showed that the increased beta-galactosidase activity generated in response to the addition of galactan was eliminated by inactivating lacA or galA but unaffected by the inactivation of yesZ [30].
  • Finally, lactose permease activity was 50% of that in control cells containing the same levels of beta-galactosidase, and the lactose permease activity in the IIIGlc overproducer was reduced to an extremely low level in the presence of methyl alpha-glucoside [31].
  • A shift to the temperature at which recA441 has constitutive protease activity did not induce Mn-superoxide dismutase but did induce beta-galactosidase [32].

Other interactions of lacZ


Analytical, diagnostic and therapeutic context of lacZ

  • Random mutations were generated in the sequence for the 5' untranslated region (5'UTR) of the Chlamydomonas reinhardtii chloroplast rps7 mRNA by PCR, the coding sequence for the mutant leaders fused upstream of the lacZ' reporter in pUC18, and transformed into Escherichia coli, and white colonies were selected [37].
  • Northern blotting showed that the transcription of the lacZ gene was inhibited in these cells [38].
  • Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis [39].
  • In this study, lacZ transcriptional fusions and an in vitro gel mobility shift assay have been utilized to study the mechanisms governing the regulation of acrAB [40].
  • Transduction efficiency of the lacZ gene was estimated histochemically by X-gal staining and quantitatively using a chemiluminescent assay [41].


  1. Cloning and characterization of a beta-galactosidase encoding region in Lactobacillus coryniformis CECT 5711. Corral, J.M., Ba??uelos, O., Adrio, J.L., Velasco, J. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  2. Evidence in vivo that the DEAD-box RNA helicase RhlB facilitates the degradation of ribosome-free mRNA by RNase E. Khemici, V., Poljak, L., Toesca, I., Carpousis, A.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Mutagenic replication in human cell extracts of DNA containing site-specific N-2-acetylaminofluorene adducts. Thomas, D.C., Veaute, X., Kunkel, T.A., Fuchs, R.P. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  4. Selection of biocatalysts for chemical synthesis. van Sint Fiet, S., van Beilen, J.B., Witholt, B. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  5. Nerve growth factor somatic mosaicism produced by herpes virus-directed expression of cre recombinase. Brooks, A.I., Muhkerjee, B., Panahian, N., Cory-Slechta, D., Federoff, H.J. Nat. Biotechnol. (1997) [Pubmed]
  6. Transfer of a foreign gene into the brain using adenovirus vectors. Akli, S., Caillaud, C., Vigne, E., Stratford-Perricaudet, L.D., Poenaru, L., Perricaudet, M., Kahn, A., Peschanski, M.R. Nat. Genet. (1993) [Pubmed]
  7. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Bajocchi, G., Feldman, S.H., Crystal, R.G., Mastrangeli, A. Nat. Genet. (1993) [Pubmed]
  8. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Jaffe, H.A., Danel, C., Longenecker, G., Metzger, M., Setoguchi, Y., Rosenfeld, M.A., Gant, T.W., Thorgeirsson, S.S., Stratford-Perricaudet, L.D., Perricaudet, M. Nat. Genet. (1992) [Pubmed]
  9. Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Le Mouellic, H., Lallemand, Y., Brûlet, P. Cell (1992) [Pubmed]
  10. Receptor-mediated gene transfer into macrophages. Ferkol, T., Perales, J.C., Mularo, F., Hanson, R.W. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  11. Mutations induced by methylene blue plus light in single-stranded M13mp2. McBride, T.J., Schneider, J.E., Floyd, R.A., Loeb, L.A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  12. Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss. Lawrence, M.S., Ho, D.Y., Dash, R., Sapolsky, R.M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  13. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. O'Reilly, M., Woodson, K., Dowds, B.C., Devine, K.M. Mol. Microbiol. (1994) [Pubmed]
  14. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Vogel, U., Sørensen, M., Pedersen, S., Jensen, K.F., Kilstrup, M. Mol. Microbiol. (1992) [Pubmed]
  15. Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains. Raman, N., Black, P.N., DiRusso, C.C. J. Biol. Chem. (1997) [Pubmed]
  16. Impact of antibiotic stress on acid and heat tolerance and virulence factor expression of Escherichia coli O157:H7. Azizoglu, R.O., Drake, M. J. Food Prot. (2007) [Pubmed]
  17. Alp suppression of Lon: dependence on the slpA gene. Trempy, J.E., Kirby, J.E., Gottesman, S. J. Bacteriol. (1994) [Pubmed]
  18. Genetic analysis of the anti-mutagenic effect of genistein in Escherichia coli. Yang, Y., Fix, D. Mutat. Res. (2006) [Pubmed]
  19. Characterization of pepR1, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM7290. Stucky, K., Schick, J., Klein, J.R., Henrich, B., Plapp, R. FEMS Microbiol. Lett. (1996) [Pubmed]
  20. Distinct regions control transcriptional activation of the alpha1(VI) collagen promoter in different tissues of transgenic mice. Braghetta, P., Fabbro, C., Piccolo, S., Marvulli, D., Bonaldo, P., Volpin, D., Bressan, G.M. J. Cell Biol. (1996) [Pubmed]
  21. Targeted replacement of the homeobox gene Hox-3.1 by the Escherichia coli lacZ in mouse chimeric embryos. Le Mouellic, H., Lallemand, Y., Brûlet, P. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  22. Characterization of hematopoietic progenitor cells that express the transcription factor SCL, using a lacZ "knock-in" strategy. Elefanty, A.G., Begley, C.G., Metcalf, D., Barnett, L., Köntgen, F., Robb, L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. SCL expression in the mouse embryo detected with a targeted lacZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. Elefanty, A.G., Begley, C.G., Hartley, L., Papaevangeliou, B., Robb, L. Blood (1999) [Pubmed]
  24. An adenoviral vector can transfer lacZ expression into Schwann cells in culture and in sciatic nerve. Shy, M.E., Tani, M., Shi, Y.J., Whyatt, S.A., Chbihi, T., Scherer, S.S., Kamholz, J. Ann. Neurol. (1995) [Pubmed]
  25. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. Bogdanov, M., Dowhan, W. J. Biol. Chem. (1995) [Pubmed]
  26. Enhancement of transcription termination factor rho activity with potassium glutamate. Zou, L.L., Richardson, J.P. J. Biol. Chem. (1991) [Pubmed]
  27. The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. Guazzaroni, M.E., Krell, T., Felipe, A., Ruiz, R., Meng, C., Zhang, X., Gallegos, M.T., Ramos, J.L. J. Biol. Chem. (2005) [Pubmed]
  28. Carbon regulation and the role in nature of the Escherichia coli penicillin acylase (pac) gene. Merino, E., Balbás, P., Recillas, F., Becerril, B., Valle, F., Bolivar, F. Mol. Microbiol. (1992) [Pubmed]
  29. Altered pH and lysine signalling mutants of cadC, a gene encoding a membrane-bound transcriptional activator of the Escherichia coli cadBA operon. Dell, C.L., Neely, M.N., Olson, E.R. Mol. Microbiol. (1994) [Pubmed]
  30. Bioinformatic, Genetic, and Biochemical Evidence that Some Glycoside Hydrolase Family 42 {beta}-Galactosidases Are Arabinogalactan Type I Oligomer Hydrolases. Shipkowski, S., Brenchley, J.E. Appl. Environ. Microbiol. (2006) [Pubmed]
  31. Sugar transport by the bacterial phosphotransferase system. In vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate:glycose phosphotransferase system. Mitchell, W.J., Saffen, D.W., Roseman, S. J. Biol. Chem. (1987) [Pubmed]
  32. Regulation of the manganese-containing superoxide dismutase is independent of the inducible DNA repair system in Escherichia coli. Hancock, L.C., Hassan, H.M. J. Biol. Chem. (1985) [Pubmed]
  33. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Paitan, Y., Biran, I., Shechter, N., Biran, D., Rishpon, J., Ron, E.Z. Anal. Biochem. (2004) [Pubmed]
  34. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Vemuri, G.N., Eiteman, M.A., Altman, E. Biotechnol. Bioeng. (2006) [Pubmed]
  35. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Hassan, H.M., Sun, H.C. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  36. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring. Bej, A.K., McCarty, S.C., Atlas, R.M. Appl. Environ. Microbiol. (1991) [Pubmed]
  37. Mutations altering the predicted secondary structure of a chloroplast 5' untranslated region affect its physical and biochemical properties as well as its ability to promote translation of reporter mRNAs both in the Chlamydomonas reinhardtii chloroplast and in Escherichia coli. Fargo, D.C., Boynton, J.E., Gillham, N.W. Mol. Cell. Biol. (1999) [Pubmed]
  38. Identification of the cpdA gene encoding cyclic 3',5'-adenosine monophosphate phosphodiesterase in Escherichia coli. Imamura, R., Yamanaka, K., Ogura, T., Hiraga, S., Fujita, N., Ishihama, A., Niki, H. J. Biol. Chem. (1996) [Pubmed]
  39. Specific polyadenylation and purification of total messenger RNA from Escherichia coli. Amara, R.R., Vijaya, S. Nucleic Acids Res. (1997) [Pubmed]
  40. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Ma, D., Alberti, M., Lynch, C., Nikaido, H., Hearst, J.E. Mol. Microbiol. (1996) [Pubmed]
  41. Assessment of efficiency and safety of adenovirus mediated gene transfer into normal and damaged murine livers. Nakatani, T., Kuriyama, S., Tominaga, K., Tsujimoto, T., Mitoro, A., Yamazaki, M., Tsujinoue, H., Yoshiji, H., Nagao, S., Fukui, H. Gut (2000) [Pubmed]
WikiGenes - Universities