The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Separation and characterization of modified variants of recombinant human insulin-like growth factor I derived from a fusion protein secreted from Escherichia coli.

Human insulin-like growth factor I, IGF-I, was produced in Escherichia coli fused to a synthetic IgG-binding peptide The fusion protein is secreted into the medium during fermentation and was initially purified on an IgG-Sepharose column. After hydroxylamine cleavage, IGF-I was purified to homogeneity. During purification, impurities in the form of modified variants of IGF-I were detected and characterized. The closely related impurities were identified to be a misfolded form of IGF-I, having mismatched disulphide bonds, a form with the single methionine residue in IGF-I oxidized to methionine sulphoxide and a variant in which the methionine residue was substituted by a norleucine residue during protein synthesis. A form proteolytically cleaved between two arginine residue was also detected. These impurities were separated from the major component, native IGF-I, by using reverse-phase h.p.l.c. The modified molecules as well as native IGF-I were characterized both as intact molecules and as fragments, after pepsin digestion, using the techniques of plasma desorption m.s., N-terminal sequencing and amino acid analysis. The oxidized form was 90%, and the norleucine analogue was 70%, as potent as native IGF-I in a biological radioreceptor assay, and the form having mismatched disulphides lacked receptor affinity.[1]

References

 
WikiGenes - Universities