Crystalline layers and three-dimensional structure of Staphylococcus aureus alpha-toxin.
Interaction of the pore-forming protein alpha-toxin from Staphylococcus aureus with lipid components from platelet membranes induces crystal formation of the toxin oligomers. Structure analysis of crystalline areas in either sodium phosphotungstic acid or a sodium phosphotungstic acid/glucose mixture has been performed with electron microscopy and image processing. Ordered domains extending up to a few micrometers were observed, particularly after application of alpha-toxin to pre-formed lipid layers. The crystals, showing tetragonal symmetry, formed either separate two-dimensional sheets or three-dimensional piles of layers. The corresponding unit cell parameter of the single layer was a = b = 109.4 A (standard deviation 2.1 A, n = 21). Incubation of the toxin with intact membranes or extracted lipids as well as application of the lipid layer technique resulted in congruous crystalline properties. The projected averaged alpha-toxin oligomer shows cyclic symmetry with a stain-filled space in the centre. The bulk of the three-dimensional model consists of four asymmetric protein units forming a ring. In addition, a small domain covers the central cavity at the face of the protein opposite to the underlying lipid. The conditions under which the tetragonal arrays are formed on the lipid layers suggest that the alpha-toxin molecule is in a conformation binding to a hydrophobic surface rather than fully inserted into a lipid bilayer.[1]References
- Crystalline layers and three-dimensional structure of Staphylococcus aureus alpha-toxin. Olofsson, A., Kavéus, U., Hacksell, I., Thelestam, M., Hebert, H. J. Mol. Biol. (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg