Autocatalytic ftz activation and metameric instability induced by ectopic ftz expression.
Inappropriate expression of the Drosophila pair-rule gene, fushi tarazu (ftz), causes cuticular pattern deletions apparently complementary to those in ftz larvae. We show that the two patterns actually originate similarly, in both cases affecting the even-numbered parasegmental boundaries. The reciprocal cuticular patterns derive from differing patterns of selector gene expression (homoeotic transformations). The primary effect of ectopic ftz activity is to broaden ftz domains by autocatalytic activation of endogenous ftz expression in an additional anterior cell. This activates engrailed (en) and represses wingless (wg) expression, consistent with their proposed combinatorial control by ftz (and other pair-rule genes) to define parasegmental primordia. We propose that the anterior margin of each ftz stripe is normally defined by the posterior even-skipped (eve) boundary.[1]References
- Autocatalytic ftz activation and metameric instability induced by ectopic ftz expression. Ish-Horowicz, D., Pinchin, S.M., Ingham, P.W., Gyurkovics, H.G. Cell (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg