The yeast H+-ATPase gene is controlled by the promoter binding factor TUF.
The H+-ATPase, located in the yeast plasma membrane and encoded by the PMA1 gene, provides energy for the active transport of nutrients and regulates intracellular pH. Expression of the PMA1 gene is essential for cell growth and development. In this study, progressive deletions of the PMA1 promoter fused to the beta-galactosidase gene have identified two upstream activating sequences. These upstream activating sequences have high homologies with the consensus sequence known to control the expression of the ribosomal protein genes (RPG). In vivo deletion of these RPG sequences from the PMA1 gene results in slower growth and reduces ATPase activity to one-third of its original value. The RPG sequences from PMA1 interact with the promoter binding factor TUF. Thus, PMA1 belongs to the RPG-TUF system which includes many constitutive genes encoding nonrelated functions such as ATP metabolism, transcription, translation, and active transport.[1]References
- The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. Capieaux, E., Vignais, M.L., Sentenac, A., Goffeau, A. J. Biol. Chem. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg