The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Biological Transport, Active

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Biological Transport, Active

 

High impact information on Biological Transport, Active

  • This is exemplified by the uptake of phosphate or its close analogue arsenate by bacterial cells by way of a high affinity active transport system dependent on a phosphate-binding protein; this system is unable to recognize other inorganic oxyanions and is, moreover, distinct from the one for sulphate transport [6].
  • This detailed structure analysis provides new understanding of protein-sugar interaction, the process by which the binding protein minimizes the difference in the stability of the two bound sugar anomers, and the roles of periplasmic binding proteins in active transport [7].
  • Coupled active transport of Na+ and K+ across cellular plasma membranes is mediated by (Na+ + K+)-stimulated Mg2+-dependent ATPase [8].
  • FhuA, the receptor for ferrichrome-iron in Escherichia coli, is a member of a family of integral outer membrane proteins, which, together with the energy-transducing protein TonB, mediate the active transport of ferric siderophores across the outer membrane of Gram-negative bacteria [9].
  • This cross-bridge cycle is similar to the kinetic cycle that drives active transport and illustrates the general principles of free energy transduction by adenosine triphosphatase systems [10].
 

Chemical compound and disease context of Biological Transport, Active

 

Biological context of Biological Transport, Active

 

Anatomical context of Biological Transport, Active

 

Associations of Biological Transport, Active with chemical compounds

  • Therefore, the response to DNP distinguished between inhibition of transport and metabolism; this approach may be useful for the investigation of factors that regulate active transport [25].
  • We compared, therefore, the uptake of 42K+ with the decrement in cellular K+ content when active transport was inhibited by ouabain [26].
  • In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high [27].
  • We found that more than 94% of 3-O-methyl-glucose is absorbed by active transport when luminal concentrations range from 50 to 400 mM [28].
  • At physiological temperature, however, the scavenger is effective only when glutamate uptake is blocked, revealing a role of active transport in both synaptic and extrasynaptic communication [29].
 

Gene context of Biological Transport, Active

 

Analytical, diagnostic and therapeutic context of Biological Transport, Active

References

  1. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Vyas, N.K., Vyas, M.N., Quiocho, F.A. Science (1988) [Pubmed]
  2. ATP-driven active transport in right-side-out bacterial membrane vesicles. Hugenholtz, J., Hong, J.S., Kaback, H.R. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  3. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. Chang, C., Mooser, A., Plückthun, A., Wlodawer, A. J. Biol. Chem. (2001) [Pubmed]
  4. Cupric ion-mediated active transport of amino acids in membrane vesicles of Mycobacterium phlei. Jacobs, A.J., Kalra, V.K., Prasad, R., Lee, S.H., Yankofsky, S., Brodie, A.F. J. Biol. Chem. (1978) [Pubmed]
  5. Transport and metabolism of vitamin B6 in lactic acid bacteria. Mulligan, J.H., Snell, E.E. J. Biol. Chem. (1977) [Pubmed]
  6. High specificity of a phosphate transport protein determined by hydrogen bonds. Luecke, H., Quiocho, F.A. Nature (1990) [Pubmed]
  7. Novel stereospecificity of the L-arabinose-binding protein. Quiocho, F.A., Vyas, N.K. Nature (1984) [Pubmed]
  8. External Na dependence of ouabain-sensitive ATP:ADP exchange initiated by photolysis of intracellular caged-ATP in human red cell ghosts. Kaplan, J.H., Hollis, R.J. Nature (1980) [Pubmed]
  9. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Ferguson, A.D., Hofmann, E., Coulton, J.W., Diederichs, K., Welte, W. Science (1998) [Pubmed]
  10. Muscle contraction and free energy transduction in biological systems. Eisenberg, E., Hill, T.L. Science (1985) [Pubmed]
  11. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli. Stroobant, P., Kaback, H.R. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  12. Structure of L-arabinose-binding protein from Escherichia coli at 5 A resolution and preliminary results at 3.5 A. Phillips, G.N., Mahajan, V.K., Siu, A.K., Quiocho, F.A. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  13. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand. Olah, G.A., Trakhanov, S., Trewhella, J., Quiocho, F.A. J. Biol. Chem. (1993) [Pubmed]
  14. The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli. Hunt, A.G., Hong, J. J. Biol. Chem. (1981) [Pubmed]
  15. Nitrogen regulation in Salmonella typhimurium. Identification of an ntrC protein-binding site and definition of a consensus binding sequence. Ferro-Luzzi Ames, G., Nikaido, K. EMBO J. (1985) [Pubmed]
  16. Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. Adachi, M., Fukuda, M., Nishida, E. J. Cell Biol. (2000) [Pubmed]
  17. Serum-induced signal transduction determines the peripheral location of beta-actin mRNA within the cell. Hill, M.A., Schedlich, L., Gunning, P. J. Cell Biol. (1994) [Pubmed]
  18. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Li, Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J., Rea, P.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  19. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12. Robbins, A.R., Rotman, B. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  20. Fetal bile salt metabolism. The intestinal absorption of bile salt. Lester, R., Smallwood, R.A., Little, J.M., Brown, A.S., Piasecki, G.J., Jackson, B.T. J. Clin. Invest. (1977) [Pubmed]
  21. Concentration of myo-inositol in skeletal muscle of the rat occurs without active transport. Molitoris, B.A., Karl, I.E., Daughaday, W.H. J. Clin. Invest. (1980) [Pubmed]
  22. Role of prostaglandins and calcium in the effects of Entamoeba histolytica on colonic electrolyte transport. McGowan, K., Piver, G., Stoff, J.S., Donowitz, M. Gastroenterology (1990) [Pubmed]
  23. Alveolar subphase pH in the lungs of anesthetized rabbits. Nielson, D.W., Goerke, J., Clements, J.A. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  24. Glutathione transport by inside-out vesicles from human erythrocytes. Kondo, T., Dale, G.L., Beutler, E. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  25. Uncoupling agents distinguish between the effects of metabolic inhibitors and transport inhibitors. Weiner, M.W. Science (1979) [Pubmed]
  26. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin. Segel, G.B., Lichtman, M.A. J. Clin. Invest. (1976) [Pubmed]
  27. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. Imai, M., Kokko, J.P. J. Clin. Invest. (1976) [Pubmed]
  28. Active transport of 3-O-methyl-glucose by the small intestine in chronically catheterized rats. Uhing, M.R., Kimura, R.E. J. Clin. Invest. (1995) [Pubmed]
  29. Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Min, M.Y., Rusakov, D.A., Kullmann, D.M. Neuron (1998) [Pubmed]
  30. Multidrug resistance protein. Identification of regions required for active transport of leukotriene C4. Gao, M., Yamazaki, M., Loe, D.W., Westlake, C.J., Grant, C.E., Cole, S.P., Deeley, R.G. J. Biol. Chem. (1998) [Pubmed]
  31. Transport of the beta -O-glucuronide conjugate of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by the multidrug resistance protein 1 (MRP1). Requirement for glutathione or a non-sulfur-containing analog. Leslie, E.M., Ito , K., Upadhyaya, P., Hecht, S.S., Deeley, R.G., Cole, S.P. J. Biol. Chem. (2001) [Pubmed]
  32. ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Oram, J.F., Vaughan, A.M. Curr. Opin. Lipidol. (2000) [Pubmed]
  33. Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. Bodo, A., Bakos, E., Szeri, F., Varadi, A., Sarkadi, B. J. Biol. Chem. (2003) [Pubmed]
  34. An analysis of the structure of the product of the rbsA gene of Escherichia coli K12. Buckel, S.D., Bell, A.W., Rao, J.K., Hermodson, M.A. J. Biol. Chem. (1986) [Pubmed]
  35. Topography of glycosylation in yeast: characterization of GDPmannose transport and lumenal guanosine diphosphatase activities in Golgi-like vesicles. Abeijon, C., Orlean, P., Robbins, P.W., Hirschberg, C.B. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  36. The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Larsen, R.A., Wood, G.E., Postle, K. Mol. Microbiol. (1993) [Pubmed]
  37. Ionic requirements of proximal tubular fluid reabsorption flow dependence of fluid transport. Green, R., Moriarty, R.J., Giebisch, G. Kidney Int. (1981) [Pubmed]
  38. Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier. Sander, B., Larsen, M., Moldow, B., Lund-Andersen, H. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  39. Duodenal active transport of calcium and phosphate in vitamin D-deficient rats: effects of nephrectomy, Cestrum diurnum, and 1alpha,25-dihydroxyvitamin D3. Walling, M.W., Kimberg, D.V., Wasserman, R.H., Feinberg, R.R. Endocrinology (1976) [Pubmed]
 
WikiGenes - Universities