The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant.

The common ice plant is a facultative halophyte in which Crassulacean acid metabolism, a metabolic adaptation to arid environments, can be induced by irrigating plants with high levels of NaCl or by drought. This stress-induced metabolic transition is accompanied by up to a 50-fold increase in the activity of phosphoenolpyruvate carboxylase (PEPCase). To analyze the molecular basis of this plant response to water stress, we have isolated and characterized two members of the PEPCase gene family from the common ice plant. The PEPCase isogenes, designated Ppc1 and Ppc2, have conserved intron-exon organizations, are 76.4% identical at the nucleotide sequence level within exons, and encode predicted polypeptides with 83% amino acid identity. Steady-state levels of mRNAs from the two genes differ dramatically when plants are salt-stressed. Transcripts of Ppc1 increase about 30-fold in leaves within 5 days of salt stress. In contrast, steady-state levels of Ppc2 transcripts decrease slightly in leaf tissue over the same stress period. Steady-state levels of transcripts of both genes decrease in roots over 5 days of salt stress. We have used in vitro transcription assays with nuclei isolated from leaves to demonstrate that the increased expression of Ppc1 caused by water stress occurs in part at the transcriptional level.[1]

References

 
WikiGenes - Universities