The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mesembryanthemum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mesembryanthemum

 

High impact information on Mesembryanthemum

 

Biological context of Mesembryanthemum

 

Anatomical context of Mesembryanthemum

  • The inducible crassulacean acid metabolism (CAM) plant Mesembryanthemum crystallinum accumulates malic acid during the night and converts it to starch during the day via a pathway that, because it is located in different subcellular compartments, depends on specific metabolite transport across membranes [10].
 

Associations of Mesembryanthemum with chemical compounds

  • The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition [11].
  • In the halophyte Mesembryanthemum crystallinum (common ice plant), two enzymes, myo-inositol O-methyltransferase (IMT1) and ononitol epimerase (OEP1), extend this pathway and lead to the accumulation of methylated inositols, D-ononitol and D-pinitol, which serve as osmoprotectants [12].
  • Characterization of a salt-responsive 24-kilodalton glycoprotein in Mesembryanthemum crystallinum [13].
  • A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant [14].
  • Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L [15].
 

Gene context of Mesembryanthemum

  • Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum [16].
  • The regulation of the structural gene encoding 1L-myo-inositol-1-phosphate synthase has also been analyzed at the transcriptional level in the aquatic angiosperm, Spirodela polyrrhiza and the halophyte, Mesembryanthemum crystallinum [17].
  • Treatment of the common ice plant (Mesembryanthemum crystallinum) with high salinity caused the well-documented increase in phosphoenolpyruvate carboxylase (PEPC) protein and a concomitant rise in the activity of a Ca(2+)-independent PEPC-kinase (PEPC-PK) [18].
  • The deduced amino acid sequence of ice plant VP1 (MVP1) is 39% identical (50% similar) to the sequence of the Arabidopsis VP1 homologue, ABI3 [19].
  • In this study, we describe two nearly identical cDNA clones (Pgh1a and Pgh1b) encoding enolase from the common ice plant [20].
 

Analytical, diagnostic and therapeutic context of Mesembryanthemum

References

  1. Characterization of IMT1, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Rammesmayer, G., Pichorner, H., Adams, P., Jensen, R.G., Bohnert, H.J. Arch. Biochem. Biophys. (1995) [Pubmed]
  2. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. Vernon, D.M., Bohnert, H.J. EMBO J. (1992) [Pubmed]
  3. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M., Bohnert, H.J. Plant Cell (1989) [Pubmed]
  4. A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. Ibdah, M., Zhang, X.H., Schmidt, J., Vogt, T. J. Biol. Chem. (2003) [Pubmed]
  5. Nucleotide sequence of the gene encoding a CAM specific isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Cushman, J.C., Bohnert, H.J. Nucleic Acids Res. (1989) [Pubmed]
  6. Multiple cDNAs of phosphoenolpyruvate carboxylase in the C4 dicot Flaveria trinervia. Poetsch, W., Hermans, J., Westhoff, P. FEBS Lett. (1991) [Pubmed]
  7. Salt stress alters A/T-rich DNA-binding factor interactions within the phosphoenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum. Cushman, J.C., Bohnert, H.J. Plant Mol. Biol. (1992) [Pubmed]
  8. Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain. Vogt, T. FEBS Lett. (2004) [Pubmed]
  9. Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Libik, M., Konieczny, R., Pater, B., Slesak, I., Miszalski, Z. Plant Cell Rep. (2005) [Pubmed]
  10. Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Häusler, R.E., Baur, B., Scharte, J., Teichmann, T., Eicks, M., Fischer, K.L., Flügge, U.I., Schubert, S., Weber, A., Fischer, K. Plant J. (2000) [Pubmed]
  11. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition. Lüttge, U., Pfeifer, T., Fischer-Schliebs, E., Ratajczak, R. Plant Physiol. (2000) [Pubmed]
  12. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G., Bohnert, H.J. Plant J. (1996) [Pubmed]
  13. Characterization of a salt-responsive 24-kilodalton glycoprotein in Mesembryanthemum crystallinum. Yen, H.E., Edwards, G.E., Grimes, H.D. Plant Physiol. (1994) [Pubmed]
  14. A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. Taybi, T., Patil, S., Chollet, R., Cushman, J.C. Plant Physiol. (2000) [Pubmed]
  15. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Neuhaus, H.E., Schulte, N. Biochem. J. (1996) [Pubmed]
  16. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Miyazaki, S., Koga, R., Bohnert, H.J., Fukuhara, T. Mol. Gen. Genet. (1999) [Pubmed]
  17. 1L-myo-inositol-1-phosphate synthase. Majumder, A.L., Johnson, M.D., Henry, S.A. Biochim. Biophys. Acta (1997) [Pubmed]
  18. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Li, B., Chollet, R. Arch. Biochem. Biophys. (1994) [Pubmed]
  19. The expression of a Vp1-like gene and seed dormancy in Mesembryanthemum crystallinum. Fukuhara, T., Bohnert, H.J. Genes Genet. Syst. (2000) [Pubmed]
  20. Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum Crystallinum L. Forsthoefel, N.R., Cushman, M.A., Cushman, J.C. Plant Physiol. (1995) [Pubmed]
  21. Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Cushman, J.C. Eur. J. Biochem. (1992) [Pubmed]
 
WikiGenes - Universities