The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 12. 1,2-Dihydroquinolylmethyl analogues with high activity and specificity for bacterial dihydrofolate reductase.

Twelve 2,4-diamino-5-[(1,2-dihydro-6-quinolyl)methyl]pyrimidines containing gem-dimethyl or fluoromethyl substituents at the 2-position of the dihydroquinoline ring were prepared by condensations of dihydroquinolines with 2,4-diamino-5-(hydroxymethyl)pyrimidine. The dihydroquinolines were produced from the reaction of anilines with mesityl oxide or fluoroacetone. In some cases, 1-aryl-2,4-dimethylpyrroles were obtained as byproducts. Most of these pyrimidines were highly inhibitory to Escherichia coli dihydrofolate reductase (DHFR) and also had high specificity for the bacterial enzyme. 2,4-Diamino-5-[[1,2-dihydro-2,4-dimethyl-3-fluoro-2-(fluoromethyl)-8- methoxy-6(1H)quinolyl]methyl]pyrimidine had an apparent Ki value for E. coli DHFR 13 times lower than that of the control, trimethoprim (1), and was 1 order of magnitude more selective for the bacterial enzyme. It had outstanding activity against Gram-positive organisms in vitro, as well as broad-spectrum antibacterial activity equivalent to that of 1. The results of in vivo testing will be reported elsewhere. The gem-dimethyl substituents of the dihydroquinoline derivatives are considered to be responsible for the high selectivity, as well as contributing to potent bacterial DHFR inhibition. Molecular models are presented which suggest the probable interactions with the bacterial enzyme.[1]

References

 
WikiGenes - Universities