The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence.

The cheW gene from Escherichia coli has been cloned an inducible promoter, and the effects of the overproduction of the CheW protein on chemotactic behavior and receptor covalent modification have been examined. Plasmids that contain the cheW gene behind a regulatable promoter complement a cheW mutation when the CheW protein is produced at low levels. However, when the CheW protein is greatly overproduced in either a wild-type strain or a cheW mutant, chemotaxis is greatly inhibited, cheW null mutant cells swim smoothly as if they were constantly responding to an attractant. Surprisingly, cells in which the CheW protein is overproduced also swim smoothly. The behavioral defect produced by overproduction of the CheW protein does not require the presence of the cheR, cheB, or cheZ gene. Receptor demethylation is also inhibited by overproduction of the CheW protein, as it is by a mutation in the cheW gene or a response to an attractant. In all respects, therefore, overproduction of the CheW protein has the same consequences as does a mutation in the cheW gene or a response to an attractant. A model involving two states of the CheW protein is proposed to explain its role in bacterial chemotaxis.[1]

References

  1. Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. Sanders, D.A., Mendez, B., Koshland, D.E. J. Bacteriol. (1989) [Pubmed]
 
WikiGenes - Universities