The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Reexamination of London, England, mortality in relation to exposure to acidic aerosols during 1963-1972 winters.

Air pollution epidemiology since the 1950s has been able to demonstrate that increases in daily mortality in London, England, were associated with elevated concentrations of index air pollutants, i.e., British Smoke (BS) and sulfur dioxide (SO2). In this work, we reanalyze that portion of the 1958-1972 winter mortality-pollution record for which daily direct acid aerosol measurements were made at a central site in London (St. Bartholomew's Medical College). The purposes of these exploratory analyses are to examine the dataset for indications of a relationship between acid aerosol pollution and human mortality and to compare any noted associations with those for other pollution variables. It is found that the log of acid aerosol concentrations is more strongly associated with raw total mortality in bivariate analyses than is BS or SO2, despite the fact that acid data are available from only one central site (versus seven disperse sites for BS and SO2). The logarithmic nature of the exposure side of the H2SO4-mortality relationship implies a saturation model of pollution effects, possibly due to multiday pollution harvesting influences on a susceptible subpopulation. Moreover, mortality-pollution cross-correlation analyses indicate that mortality effects usually follow pollution in time, supporting a causal relationship between the two. The apparent advantage of H2SO4 over BS in predicting total raw mortality is consistent with the hypothesis that it is the portion of particulate mass of greater health significance and may also allow the development of London mortality results which are more easily transferable to other environments than is the case for existing BS results.[1]

References

  1. Reexamination of London, England, mortality in relation to exposure to acidic aerosols during 1963-1972 winters. Thurston, G.D., Ito, K., Lippmann, M., Hayes, C. Environ. Health Perspect. (1989) [Pubmed]
 
WikiGenes - Universities