The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A novel method for the analysis of platelet-activating factor: direct derivatization of glycerophospholipids.

A novel, facile, and sensitive method for the quantitative and complete structure-proof analysis of platelet-activating factor (PAF) and other glycerophospholipids is described. 1-O-Alkyl/acyl-2-acyl-3-glycerophospholipids were treated with heptafluorobutyric anhydride in a one-step reaction to yield 1-O-alkyl/acyl-2-acyl-3-heptafluorobutyroyl-sn-glycerols as gas-liquid chromatography (GLC)-compatible derivatives. Furthermore, the components of the polar head group were also analyzed from the aqueous extract of the same reaction mixture as t-butyldimethylsilyl derivatives. Thus, this new method eliminates the need for phospholipase C treatment and subsequent purification procedures. Moreover, the direct derivatization of PAF homologs and analogs with hepatofluorobutyric anhydride does not result in positional isomerization of the product, providing increased specificity for gas-liquid chromatography-mass spectrometric (MS) analysis. It has also been shown that the heptafluorobutyroyl (HFB) derivative can easily be converted to the respective t-butyldimethylsilyl analog in a one-step reaction using t-butyldimethylsilyl chloride/imidazole reagent. Analogous to the formation of heptafluorobutyroyl derivatives, PAF also was reacted with pentafluorobenzoyl chloride to generate the pentafluorobenzoyl derivative. Therefore, this method has wide applicability for the formation of GLC-compatible derivatives of various glycerophospholipids. Our successful HFB derivatization and GLC-MS detection of subnanogram quantities of PAF indicate that this analytical procedure will greatly facilitate complete and quantitative identification of each of the molecular species of biologically derived PAF.[1]

References

  1. A novel method for the analysis of platelet-activating factor: direct derivatization of glycerophospholipids. Satsangi, R.K., Ludwig, J.C., Weintraub, S.T., Pinckard, R.N. J. Lipid Res. (1989) [Pubmed]
 
WikiGenes - Universities