Mitochondrial H+-ATPase activation by an amine oxide detergent.
Lauryl dimethylamine oxide activates ATP hydrolysis by the mitochondrial H+-ATPase. Activation is observed in systems with a high content of inhibitor protein as described by Pullman and Monroy (Pullman, M.E., and Monroy, G.C. (1963) J. Biol. Chem. 238, 3762-3769), i.e. Mg-ATP submitochondrial particles and a Triton X-100-solubilized H+-ATPase from the same particles. Detergent activation of ATP hydrolysis is also present in inhibitor-reconstituted systems, i.e. submitochondrial particles, Triton extracts, and soluble F1-ATPase. In submitochondrial particles depleted of inhibitor protein, lauryl dimethylamine oxide induced a biphasic response which is characterized by a drop-in activity induced by relatively low concentrations of LDAO; at higher concentrations the detergent activates to an extent never greater than the initial activity. In inhibitor protein-depleted oligomycin-sensitive Triton extracts, lauryl dimethylamine oxide stimulates ATP hydrolysis to very high values (30 mumol min-1 mg-1). These findings suggest that in addition to the inhibitor protein ATP hydrolysis is controlled by other subunit interactions.[1]References
- Mitochondrial H+-ATPase activation by an amine oxide detergent. Vázquez-Laslop, N., Dreyfus, G. J. Biol. Chem. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg