Effect of lectin-binding to fibrinogen D and E domains on coagulation and fibrinolysis.
The effect on fibrinogen coagulation and fibrinolysis of the mannose-specific lectins concanavalin A, its acetyl derivative and Lens culinaris agglutinin was studied. Concanavalin A and acetyl-concanavalin A, which bind to the four carbohydrate chains of fibrinogen, and L. culinaris agglutinin, which only binds to the carbohydrate present in fibrinogen D domains, has the same effect on the coagulation rate: an inhibition at low lectin concentrations and an increase at high concentrations. On the other hand, L. culinaris agglutinin does not alter fibrin crosslinking while acetyl-concanavalin A produces a slight inhibition of both gamma-gamma and alpha-polymer formation. However, this effect is very small when compared with the clear inhibitory effect produced by concanavalin A. Concanavalin A and acetyl-concanavalin A have an inhibitory effect on the rate of fibrin clot lysis proportional to the lectin concentration. Nearly 100% inhibition was obtained when two lectin-binding sites were occupied by either concanavalin A or acetyl-concanavalin A. However, L. culinaris agglutinin has a clearly weaker effect and more than 50% inhibition was not observed. The comparative study of the effect of the three lectins on fibrinolysis as well as on the formation of fibrinogen aggregates suggests that the inhibitory effect of concanavalin A and acetyl-concanavalin A is primarily due to their binding to the carbohydrate chains of fibrinogen E domain.[1]References
- Effect of lectin-binding to fibrinogen D and E domains on coagulation and fibrinolysis. Solis, D., Albert, A., Diaz-Mauriño, T. Biochim. Biophys. Acta (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg