The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Verapamil-induced changes in central conduction in patients with multiple sclerosis.

The electrophysiological characteristics of demyelinated axons are sensitive to changes in plasma calcium concentration. This study investigated the effect of verapamil, a calcium antagonist drug, on brainstem auditory, visual, and somatosensory evoked potentials in multiple sclerosis patients. Eight clinically stable patients with abnormal visual and/or brainstem auditory evoked potentials and four normal volunteers were studied. During intravenous infusions of verapamil (mean plasma concentration = 130.0 +/- 56.4 ng/ml), the latencies of peaks III and V were shortened (p less than 0.05) in multiple sclerosis patients with abnormally prolonged BAEPs. The I-III (delta = 0.08 ms), III-V (delta = 0.46 ms), and I-V (delta = 0.53 ms) interpeak intervals, and the P100 latency (delta = 10.15 ms) of the visual evoked potential were similarly affected in these patients. In contrast, normal evoked potentials of both multiple sclerosis patients and control subjects were not altered compared to baseline recordings obtained 24 hours earlier. Intravenous verapamil, therefore, alters the BAEPs and VEPs of some multiple sclerosis patients with demyelinated auditory and visual pathways by shortening pathologically prolonged latencies toward normal. The present study suggests pharmacological manipulation of calcium-dependent processes, possibly at the level of the demyelinated axon, can acutely facilitate central conduction of electrical impulses in some patients with clinically stable multiple sclerosis.[1]

References

  1. Verapamil-induced changes in central conduction in patients with multiple sclerosis. Gilmore, R.L., Kasarskis, E.J., McAllister, R.G. J. Neurol. Neurosurg. Psychiatr. (1985) [Pubmed]
 
WikiGenes - Universities