The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Visual Pathways

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Visual Pathways

 

Psychiatry related information on Visual Pathways

 

High impact information on Visual Pathways

 

Chemical compound and disease context of Visual Pathways

 

Biological context of Visual Pathways

 

Anatomical context of Visual Pathways

 

Associations of Visual Pathways with chemical compounds

  • During axonal regeneration, optic tract glia show increased incorporation of both thymidine and amino acids [28].
  • The distinctive properties of rho receptors are very similar to those of bicuculline-insensitive GABA-gated chloride channels identified in retina, suggesting a molecular basis for this form of GABA receptor in visual pathways [29].
  • Inhibition of protein tyrosine kinases impairs axon extension in the embryonic optic tract [30].
  • A rat model was developed in which optic tracts were enhanced by manganese ions [31].
  • By acting through retinal nicotinic acetylcholine receptors (nAChRs), acetylcholine plays an important role in the development of both the retina and central visual pathways [32].
 

Gene context of Visual Pathways

  • Long-term survival of most RGCs in culture can be promoted by a combination of trophic factors normally produced along the visual pathway, including BDNF, CNTF, IGF1, an oligodendrocyte-derived protein, and forskolin [33].
  • Thus, Foxd1 plays a dual role in the establishment of the binocular visual pathways: first, in specification of the VT retina, acting upstream of proteins directing the ipsilateral pathway; and second, in the patterning of the developing ventral diencephalon where the optic chiasm forms [34].
  • Electrophysiological studies demonstrated that Vsx1 mutant mice have defects in their cone visual pathway, whereas the rod visual pathway was unaffected [35].
  • Cells expressing both MBP and GFAP were also identified in optic tract [36].
  • Furthermore, the axons with elevated FGFR expression in the optic tract have a posterior border of rich FGFR expression in the lateral part of the diencephalon [37].
 

Analytical, diagnostic and therapeutic context of Visual Pathways

References

  1. not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Becker, T.S., Burgess, S.M., Amsterdam, A.H., Allende, M.L., Hopkins, N. Development (1998) [Pubmed]
  2. Visual evoked potentials in adrenoleukodystrophy: a trial with glycerol trioleate and Lorenzo oil. Kaplan, P.W., Tusa, R.J., Shankroff, J., Heller, J., Moser, H.W. Ann. Neurol. (1993) [Pubmed]
  3. Visual evoked potentials in Negro carriers of the gene for tyrosinase positive oculocutaneous albinism. Castle, D., Kromberg, J., Kowalsky, R., Moosa, R., Gillman, N., Zwane, E., Fritz, V. J. Med. Genet. (1988) [Pubmed]
  4. Subclinical visual involvement in multiple sclerosis: a study by MRI, VEPs, frequency-doubling perimetry, standard perimetry, and contrast sensitivity. Sisto, D., Trojano, M., Vetrugno, M., Trabucco, T., Iliceto, G., Sborgia, C. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  5. Acrylamide effects on the macaque visual system. I. Psychophysics and electrophysiology. Merigan, W.H., Barkdoll, E., Maurissen, J.P., Eskin, T.A., Lapham, L.W. Invest. Ophthalmol. Vis. Sci. (1985) [Pubmed]
  6. Visual cortical inputs to deep layers of cat's superior colliculus. Berson, D.M., McIlwain, J.T. J. Neurophysiol. (1983) [Pubmed]
  7. Functional integrity of benzodiazepine receptors of the geniculo-striate visual pathways in Creutzfeldt-Jakob disease. A pharmacological evoked potential study. Aguglia, U., Oliveri, R.L., Gambardella, A., Quattrone, A. J. Neurol. (1993) [Pubmed]
  8. Biotinidase deficiency: a survey of 10 cases. Wastell, H.J., Bartlett, K., Dale, G., Shein, A. Arch. Dis. Child. (1988) [Pubmed]
  9. Novel GABA responses from rod-driven retinal horizontal cells. Qian, H., Dowling, J.E. Nature (1993) [Pubmed]
  10. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Constantine-Paton, M., Cline, H.T., Debski, E. Annu. Rev. Neurosci. (1990) [Pubmed]
  11. Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Shewan, D., Dwivedy, A., Anderson, R., Holt, C.E. Nat. Neurosci. (2002) [Pubmed]
  12. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Lee, J.S., von der Hardt, S., Rusch, M.A., Stringer, S.E., Stickney, H.L., Talbot, W.S., Geisler, R., Nüsslein-Volhard, C., Selleck, S.B., Chien, C.B., Roehl, H. Neuron (2004) [Pubmed]
  13. The retinal dopamine network alters the adaptational properties of retinal ganglion cells in the cat. Maguire, G., Hamasaki, D.I. J. Neurophysiol. (1994) [Pubmed]
  14. Visual failure caused by suprasellar extramedullary hematopoiesis in beta thalassemia: case report. Aarabi, B., Haghshenas, M., Rakeii, V. Neurosurgery (1998) [Pubmed]
  15. [3H]Digoxin in the optic tract in digoxin intoxication. Binnion, P.F., Frazer, G. J. Cardiovasc. Pharmacol. (1980) [Pubmed]
  16. Disturbed visual system function in methionine synthase deficiency. Poloschek, C.M., Fowler, B., Unsold, R., Lorenz, B. Graefes Arch. Clin. Exp. Ophthalmol. (2005) [Pubmed]
  17. Positron emission tomography and 18F-fluorodeoxyglucose for the detection of visual pathway abnormalities in albinism. Nakagawa, Y., Kiyosawa, M., Tamai, M., Ito, M. Am. J. Ophthalmol. (1993) [Pubmed]
  18. Axonal transport of a heat shock protein in the rabbit visual system. Clark, B.D., Brown, I.R. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  19. Changes in glutamate receptor function in synaptic input to the superficial superior colliculus (SSC) with aging and in retinal degeneration in the Royal College of Surgeons (RCS) rat. Pothecary, C.A., Thompson, H., Salt, T.E. Neurobiol. Aging (2005) [Pubmed]
  20. Visual evoked potential abnormalities in jaundiced Gunn rats treated with sulfadimethoxine. Silver, S., Sohmer, H., Kapitulnik, J. Pediatr. Res. (1995) [Pubmed]
  21. Neurosteroid modulation of GABA binding sites in developing avian central nervous system. Viapiano, M.S., de Novara, A.M., de Plazas, S.F. Neurochem. Int. (1998) [Pubmed]
  22. The intergeniculate leaflet does not mediate the disruptive effects of constant light on circadian rhythms in the rat. Edelstein, K., Amir, S. Neuroscience (1999) [Pubmed]
  23. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. Lewis, S.E., Nixon, R.A. J. Cell Biol. (1988) [Pubmed]
  24. Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm midline: an in vitro study. Wizenmann, A., Thanos, S., von Boxberg, Y., Bonhoeffer, F. Development (1993) [Pubmed]
  25. GAP-43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation. Zhang, F., Lu, C., Severin, C., Sretavan, D.W. Development (2000) [Pubmed]
  26. Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43. Kruger, K., Tam, A.S., Lu, C., Sretavan, D.W. J. Neurosci. (1998) [Pubmed]
  27. Microtubule-associated protein 2 (MAP2) is present in astrocytes of the optic nerve but absent from astrocytes of the optic tract. Papasozomenos, S.C., Binder, L.I. J. Neurosci. (1986) [Pubmed]
  28. Peptides from the regenerating central nervous system of goldfish stimulate glia. Giulian, D. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  29. A novel gamma-aminobutyric acid receptor subunit (rho 2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. Wang, T.L., Guggino, W.B., Cutting, G.R. J. Neurosci. (1994) [Pubmed]
  30. Inhibition of protein tyrosine kinases impairs axon extension in the embryonic optic tract. Worley, T., Holt, C. J. Neurosci. (1996) [Pubmed]
  31. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Lin, C.P., Tseng, W.Y., Cheng, H.C., Chen, J.H. Neuroimage (2001) [Pubmed]
  32. Nicotinic acetylcholine receptor subtypes expression during rat retina development and their regulation by visual experience. Moretti, M., Vailati, S., Zoli, M., Lippi, G., Riganti, L., Longhi, R., Viegi, A., Clementi, F., Gotti, C. Mol. Pharmacol. (2004) [Pubmed]
  33. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Meyer-Franke, A., Kaplan, M.R., Pfrieger, F.W., Barres, B.A. Neuron (1995) [Pubmed]
  34. Foxd1 is required for proper formation of the optic chiasm. Herrera, E., Marcus, R., Li, S., Williams, S.E., Erskine, L., Lai, E., Mason, C. Development (2004) [Pubmed]
  35. Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1. Ohtoshi, A., Wang, S.W., Maeda, H., Saszik, S.M., Frishman, L.J., Klein, W.H., Behringer, R.R. Curr. Biol. (2004) [Pubmed]
  36. Evidence for central nervous system glial cell plasticity in phenylketonuria. Dyer, C.A., Kendler, A., Philibotte, T., Gardiner, P., Cruz, J., Levy, H.L. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  37. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway. Lin, L., Taylor, J.S., Chan, S.O. J. Comp. Neurol. (2002) [Pubmed]
  38. Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non-NMDA receptors. Turner, J.P., Leresche, N., Guyon, A., Soltesz, I., Crunelli, V. J. Physiol. (Lond.) (1994) [Pubmed]
  39. Somatostatin (SRIF)-like immunoreactivity in subcortical and cortical visual centers of the rat. Laemle, L.K., Feldman, S.C. J. Comp. Neurol. (1985) [Pubmed]
  40. Synaptically released and exogenous ACh activates different nicotinic receptors to enhance evoked glutamatergic transmission in the lateral geniculate nucleus. Guo, J.Z., Liu, Y., Sorenson, E.M., Chiappinelli, V.A. J. Neurophysiol. (2005) [Pubmed]
  41. Visual field abnormalities in multiple sclerosis. Patterson, V.H., Heron, J.R. J. Neurol. Neurosurg. Psychiatr. (1980) [Pubmed]
  42. Evidence of optic pathway gliomas after previously negative neuroimaging. Massry, G.G., Morgan, C.F., Chung, S.M. Ophthalmology (1997) [Pubmed]
 
WikiGenes - Universities