The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Ribonucleotide reductase from Escherichia coli. Identification of allosteric effector sites by chromatography on immobilized effectors.

Ribonucleotide reductase is responsible for the production of deoxyribonucleotides by catalyzing the reduction of ribonucleoside diphosphates. The enzyme is allosterically regulated in a complex way by the nucleoside triphosphates, ATP, dTTP, dGTP, dCTP, and dATP. Ribonucleotide reductase consists of two nonidentical subunits, proteins B1 and B2. Both substrates and allosteric effectors bind exclusively to B1. Binding of protein B1 to dTTP or dATP covalently coupled to Sepharose and elution with concentration gradients of the different nucleoside triphosphate effectors gave information about (1) the arrangement of the effector binding sites on protein B1 and (2) the affinity of the effectors for these sites. Protein B1 thus has two classes of effector binding sites. One class binds all effectors, as demonstrated by elution of the protein from dTTP-Sepharose with dATP, dGTP, ATP, or dCTP. The second class binds only dATP or ATP, since dATP and ATP were the only nucleotides which eluted protein B1 from dATP-Sepharose. These results confirm earlier data obtained by dialysis binding experiments. The eluting concentrations obtained for the different nucleoside triphosphates in experiments with dTTP-Sepharose could be used to calculate unknown dissociation constants for protein B1 -effector binary complexes. This was possible, since a plot of the eluting concentrations vs. known dissociation constants was linear.[1]


WikiGenes - Universities