The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

D-phenylalanine: a putative enkephalinase inhibitor studied in a primate acute pain model.

D-Phenylalanine, along with morphine, acetylsalicylic acid and zomepirac sodium were evaluated for their antinociceptive actions in monkeys (M. fascicularis) trained to autoregulate nociceptive stimulation using a discrete-trials, aversive-threshold paradigm. Morphine sulfate produced dose-related increases in aversive threshold which were reversible after administration of naloxone (12.5 or 25 micrograms/kg i.m.). D-Phenylalanine (500 mg/kg p.o.) produced a small increase in aversive threshold which was not statistically significant and not naloxone reversible. Acetylsalicylic acid (200 mg/kg p.o.) but not zomepirac sodium (200 mg/kg p.o.) in combination with D-phenylalanine (500 mg/kg) produced a small statistically significant increase in aversive threshold. Our results argue against the hypothesis that D-phenylalanine is responsible for increasing aversive thresholds via opiate receptor mechanisms involving increased activity of enkephalins at synaptic loci. Previous studies by others in rats and mice showed that D-phenylalanine and acetylsalicylic acid produced increases in nociceptive thresholds which were naloxone reversible. Our failure to find opiate receptor mediated analgesia in a primate model with demonstrated opiate receptor selectivity and sensitivity is discussed in terms of previous basic and clinical research indicating an analgesic role for D-phenylalanine. Possible species difference in drug action is discussed in terms of inhibition by D-phenylalanine of carboxy-peptidase-like enkephalin processing enzymes as well as inhibition of carboxypeptidase-like enkephalin degrading enzymes.[1]


WikiGenes - Universities