Defective assembly of the mitochondrial ribosomes in yeast cells grown in the presence of mitochondrial protein synthesis inhibitors.
The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in the presence of mitochondrial protein synthesis inhibitors erythromycin and chloramphenicol. Yeast cells grown in the presence of erythromycin (2 mg/ml) do not appear to contain any detectable amounts of the mitochondrial small (37 S) ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S was observed; this particle could be shown to be related to the mitochondrial small ribosomal subunit by two-dimensional gel electrophoretic analysis of its protein components. Since the var1 protein is the only mitochondrial translation product known to be associated with the mitochondrial ribosome, our results suggest that this protein is essential for the assembly of the mature small subunit, and that the var1 protein enters the pathway for the assembly of the small subunit at a late step. In at least one strain of yeast the accumulation of the 30-S particle appears to be very sensitive to catabolite repression. When yeast cells are grown in the presence of chloramphenicol instead of erythromycin, assembly of the small subunit appears to be only partially inhibited, and the presence of the 30-S particle could not be clearly demonstrated. This observation is consistent with the fact that in yeast, chloramphenicol inhibits mitochondrial protein synthesis by about 95% only and that the synthesis of the var1 protein appears to be the least sensitive to this inhibition.[1]References
- Defective assembly of the mitochondrial ribosomes in yeast cells grown in the presence of mitochondrial protein synthesis inhibitors. Maheshwari, K.K., Marzuki, S. Biochim. Biophys. Acta (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg