The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Defective assembly of the mitochondrial ribosomes in yeast cells grown in the presence of mitochondrial protein synthesis inhibitors.

The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in the presence of mitochondrial protein synthesis inhibitors erythromycin and chloramphenicol. Yeast cells grown in the presence of erythromycin (2 mg/ml) do not appear to contain any detectable amounts of the mitochondrial small (37 S) ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S was observed; this particle could be shown to be related to the mitochondrial small ribosomal subunit by two-dimensional gel electrophoretic analysis of its protein components. Since the var1 protein is the only mitochondrial translation product known to be associated with the mitochondrial ribosome, our results suggest that this protein is essential for the assembly of the mature small subunit, and that the var1 protein enters the pathway for the assembly of the small subunit at a late step. In at least one strain of yeast the accumulation of the 30-S particle appears to be very sensitive to catabolite repression. When yeast cells are grown in the presence of chloramphenicol instead of erythromycin, assembly of the small subunit appears to be only partially inhibited, and the presence of the 30-S particle could not be clearly demonstrated. This observation is consistent with the fact that in yeast, chloramphenicol inhibits mitochondrial protein synthesis by about 95% only and that the synthesis of the var1 protein appears to be the least sensitive to this inhibition.[1]


WikiGenes - Universities