Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break.
A 1.1 kb intron containing an open reading frame (ORF) in one allele (omega+) of the yeast mitochondrial 21S rRNA gene is nearly quantitatively inserted in crosses into a 21S rRNA allele lacking that intron (omega-). We have determined that this nonreciprocal exchange initiates soon after cells fuse to form zygotes and is complete by 10-16 hr after mating. We have discovered a unique in vivo double-strand cut in omega- mitochondrial DNA (mtDNA) at or near the site of intron insertion that is implicated in the process. Markers flanking the intron insertion site are coconverted with frequencies inversely proportional to their distance from that site. There is no net conversion of omega- to omega+ in crosses between petites retaining these alleles, nor do we observe the unique double-strand cut in the mtDNA from zygotes of such crosses. The data suggest that a translation product of the intron ORF is required for the double-strand cut and nonreciprocal recombination at omega.[1]References
- Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Zinn, A.R., Butow, R.A. Cell (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg