Digitoxin therapy partially restores cardiac catecholamine and brain serotonin metabolism in congestive heart failure.
The effect of therapeutic doses of digitalis in modifying neural activity has been the subject of considerable controversy. In earlier studies we reported an increase both in serotonergic activity in the posterior hypothalamus and pons-medulla and in cardiac sympathetic tone in the failing cardiomyopathic hamster. In this study we examine the effects of doses of digitoxin, known to be therapeutic for hamster heart failure, on monoamine neurotransmitter metabolism in the brain and heart during the cardiomyopathy. Both digitoxin and ASI-222, a polar amino-glycoside which does not cross the blood-brain barrier, given either acutely (6 mg/kg ip) or chronically (2 mg/kg/day ip for 10 days), normalized the failure-induced increase in serotonin turnover in the pons-medulla but had no effect on the changes in the posterior hypothalamus. Digitoxin therapy also reduced cardiac and adrenal sympathetic activity partially restoring cardiac catecholamine stores. In order to more clearly define the pathways involved we measured serotonin (microgram/g protein) in 18 brain nuclei after 10 days of digitoxin or vehicle treatment. Heart failure was associated with an increase in serotonin in five nuclei: the mammillary; bodies, ventromedial, periventricular and paraventricular nuclei of the hypothalamus, and the centralis superior nucleus of the raphe. Digitoxin therapy completely normalized the changes in the centralis superior and ventromedialis nuclei; neither congestive heart failure nor digitoxin affected serotonin levels in other nuclei. We conclude that there is an increase in activity in specific brain serotonergic nuclei in congestive heart failure. Digitalis reduces cardiac sympathetic tone and restores the changes in two of these nuclei: the ventromedial and the centralis superior.+2[1]References
- Digitoxin therapy partially restores cardiac catecholamine and brain serotonin metabolism in congestive heart failure. Sole, M.J., Benedict, C.R., Versteeg, D.H., de Kloet, E.R. J. Mol. Cell. Cardiol. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg