Proton conductor vs. cold in induction of Ca(2+)-dependent competence in Escherichia coli.
In order to elucidate the molecular mechanisms of Ca(2+)-dependent competence in gram-negative bacteria an attempt was made to induce the competence at room temperature in presence of a proton conductor, carbonylcyanide-m-chlorophenylhydrazone (CCCP). Escherichia coli K12 cells treated with Ca2+ at 25 degrees or 37 degrees C in presence of CCCP became permeable for transforming plasmid and transfecting DNAs and DNA-binding antibiotic actinomycin C (AmC) and rubomycin (Rm) at room temperature. The efficiencies of transformation and transfection, however, were by 1-3 orders of magnitude lower compared to cells, treated with Ca2+ at 0 degree C, though both recipients did not differ significantly in their susceptibility to AmC and Rm. Possible mechanisms of Ca2+ action in both recipient systems are discussed in terms of molecular interactions.[1]References
- Proton conductor vs. cold in induction of Ca(2+)-dependent competence in Escherichia coli. Sabelnikov, A.G., Domaradsky, I.V. Mol. Gen. Genet. (1979) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg