The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Rubomycin     (7S,9R)-7-[(2S,4S,5S,6S)-4- amino-5-hydroxy...

Synonyms: Cerubidine, Daunomycin, Rubidomycin, Daunoblastin, daunorubicin, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Rubidomycin


Psychiatry related information on Rubidomycin


High impact information on Rubidomycin


Chemical compound and disease context of Rubidomycin


Biological context of Rubidomycin

  • Here, we demonstrate that NF-kappa B induced by cytotoxic stimuli, such as ultraviolet light (UV-C) and the chemotherapeutic drugs daunorubicin/doxorubicin, is functionally distinct to that seen with the inflammatory cytokine TNF and is an active repressor of antiapoptotic gene expression [9].
  • The effects were stimulus dependent, such that neither inhibitory molecule affected Fas- and daunorubicin-induced apoptosis to the same degree as TNF-induced death [15].
  • Doxorubicin (Adr), daunorubicin (Dnr), and analogs of Adr modified in daunosamine (4'-epi-Adr and 3'-N-acetyl-Adr) were investigated with respect to their reaction with Fe(III) and analyzed for the ability of the corresponding iron complexes to sustain lipid peroxidation of isolated human platelet membranes [16].
  • The amino acid analogue L-histidinol reverses the multidrug-resistance (MDR) attribute of the colchicine-resistant (CHR) variant CHRC5, a Chinese hamster ovary cell line that overexpresses a plasma membrane-associated glycoprotein and is resistant to colchicine (CH), daunorubicin, and vinblastine sulfate (VS) [17].
  • The DrrA protein is similar to a large family of ATP-binding transport proteins, including the proteins encoded by the mdr genes from mammalian tumor cells, which confer resistance to daunorubicin, doxorubicin, and some other structurally unrelated chemotherapeutic agents [12].

Anatomical context of Rubidomycin

  • Thus cells resistant to DNR internalized 2.04% of their plasma membrane per minute, in contrast to 1.17% in sensitive cells [18].
  • In accordance with this localization, MRP caused increased transport of the glutathione S-conjugate S-(2, 4-dinitrophenyl)-glutathione and of the anticancer drug daunorubicin to the basal side of the epithelial cell layer [19].
  • Cyclosporin A (CsA) completely reverses primary resistance to vincristine and cross resistance to daunorubicin in a pleiotropic drug-resistant subline of human T cell acute lymphatic leukemia [20].
  • Cytotoxicity of adriamycin and daunorubicin for normal and leukemia progenitor cells of man [21].
  • Very low accumulation of vincristine or daunorubicin was observed in the multiple-drug-resistant KB cells in comparison with accumulation in the parental KB cells [22].

Associations of Rubidomycin with other chemical compounds


Gene context of Rubidomycin

  • Here we demonstrate that depletion of intracellular glutathione by DL-buthionine (S,R)-sulfoximine results in a complete reversal of resistance to doxorubicin, daunorubicin, vincristine, and VP-16 in lung carcinoma cells transfected with a MRP cDNA expression vector [26].
  • In light of the emerging concept of a protective function of the mitogen-activated protein kinase (MAPK) pathway under stress conditions, we investigated the influence of the anthracycline daunorubicin (DNR) on MAPK signaling and its possible contribution to DNR-induced cytotoxicity [27].
  • The ability of the anticancer drug and potent genotoxic agent daunorubicin to induce mdr1 independently of AhR.Arnt further supports the proposition that mdr1 is transcriptionally up-regulated by p53 in response to DNA damage [28].
  • Reduced levels of mitoxantrone, daunorubicin, bisantrene, topotecan, rhodamine 123 and prazosin were observed in the two sublines with high MXR expression [29].
  • In HL60/Adr cells (MRP-1), VX-710 increased mitoxantrone and daunorubicin uptake by 43 and 130%, increased their retention by 90 and 60%, and increased their cytotoxicity 2.4- and 3.3-fold [30].

Analytical, diagnostic and therapeutic context of Rubidomycin


  1. Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma. Slater, L.M., Murray, S.L., Wetzel, M.W., Wisdom, R.M., DuVall, E.M. J. Clin. Invest. (1982) [Pubmed]
  2. Reversal of daunorubicin resistance in P388/ADR cells by itraconazole. Gupta, S., Kim, J., Gollapudi, S. J. Clin. Invest. (1991) [Pubmed]
  3. Liposomal daunorubicin treatment of HIV-associated Kaposi's sarcoma. Presant, C.A., Scolaro, M., Kennedy, P., Blayney, D.W., Flanagan, B., Lisak, J., Presant, J. Lancet (1993) [Pubmed]
  4. The place of bone-marrow transplantation in acute myelogenous leukaemia. Powles, R.L., Morgenstern, G., Clink, H.M., Hedley, D., Bandini, G., Lumley, H., Watson, J.G., Lawson, D., Spence, D., Barrett, A., Jameson, B., Lawler, S., Kay, H.E., McElwain, T.J. Lancet (1980) [Pubmed]
  5. Lipid peroxidation and antioxidant defense mechanisms in rat renal tissue after daunorubicin administration. Dioudis, C., Grekas, D., Papageorgiou, G., Iliadis, S., Botsoglou, N., Zilidis, C., Tourkantonis, A., Trakatellis, A. Renal failure. (1996) [Pubmed]
  6. All-trans-retinoic acid in acute promyelocytic leukemia. Tallman, M.S., Andersen, J.W., Schiffer, C.A., Appelbaum, F.R., Feusner, J.H., Ogden, A., Shepherd, L., Willman, C., Bloomfield, C.D., Rowe, J.M., Wiernik, P.H. N. Engl. J. Med. (1997) [Pubmed]
  7. Autologous or allogeneic bone marrow transplantation compared with intensive chemotherapy in acute myelogenous leukemia. European Organization for Research and Treatment of Cancer (EORTC) and the Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) Leukemia Cooperative Groups. Zittoun, R.A., Mandelli, F., Willemze, R., de Witte, T., Labar, B., Resegotti, L., Leoni, F., Damasio, E., Visani, G., Papa, G. N. Engl. J. Med. (1995) [Pubmed]
  8. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Wang, C.Y., Mayo, M.W., Baldwin, A.S. Science (1996) [Pubmed]
  9. Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Campbell, K.J., Rocha, S., Perkins, N.D. Mol. Cell (2004) [Pubmed]
  10. Gene amplification-associated cytogenetic aberrations and protein changes in vincristine-resistant Chinese hamster, mouse, and human cells. Meyers, M.B., Spengler, B.A., Chang, T.D., Melera, P.W., Biedler, J.L. J. Cell Biol. (1985) [Pubmed]
  11. Intensive chemotherapy for acute myelogenous leukemia. Gale, R.P., Foon, K.A., Cline, M.J., Zighelboim, J. Ann. Intern. Med. (1981) [Pubmed]
  12. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Guilfoile, P.G., Hutchinson, C.R. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  13. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. List, A.F., Kopecky, K.J., Willman, C.L., Head, D.R., Persons, D.L., Slovak, M.L., Dorr, R., Karanes, C., Hynes, H.E., Doroshow, J.H., Shurafa, M., Appelbaum, F.R. Blood (2001) [Pubmed]
  14. Results of consecutive trials for children newly diagnosed with acute myeloid leukemia from the Australian and New Zealand Children's Cancer Study Group. O'Brien, T.A., Russell, S.J., Vowels, M.R., Oswald, C.M., Tiedemann, K., Shaw, P.J., Lockwood, L., Teague, L., Rice, M., Marshall, G.M. Blood (2002) [Pubmed]
  15. Stimulus-dependent synergism of the antiapoptotic tumor necrosis factor receptor-associated factor 2 (TRAF2) and nuclear factor kappaB pathways. Lee, S.Y., Kaufman, D.R., Mora, A.L., Santana, A., Boothby, M., Choi, Y. J. Exp. Med. (1998) [Pubmed]
  16. Role of daunosamine and hydroxyacetyl side chain in reaction with iron and lipid peroxidation by anthracyclines. Gianni, L., Viganò, L., Lanzi, C., Niggeler, M., Malatesta, V. J. Natl. Cancer Inst. (1988) [Pubmed]
  17. Reversal of the multidrug-resistant phenotype of Chinese hamster ovary cells by L-histidinol. Warrington, R.C., Fang, W.D. J. Natl. Cancer Inst. (1989) [Pubmed]
  18. Increase in nonspecific adsorptive endocytosis in anthracycline- and vinca alkaloid-resistant Ehrlich ascites tumor cell lines. Sehested, M., Skovsgaard, T., van Deurs, B., Winther-Nielsen, H. J. Natl. Cancer Inst. (1987) [Pubmed]
  19. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. Evers, R., Zaman, G.J., van Deemter, L., Jansen, H., Calafat, J., Oomen, L.C., Oude Elferink, R.P., Borst, P., Schinkel, A.H. J. Clin. Invest. (1996) [Pubmed]
  20. Cyclosporin A reverses vincristine and daunorubicin resistance in acute lymphatic leukemia in vitro. Slater, L.M., Sweet, P., Stupecky, M., Gupta, S. J. Clin. Invest. (1986) [Pubmed]
  21. Cytotoxicity of adriamycin and daunorubicin for normal and leukemia progenitor cells of man. Buick, R.N., Messner, H.A., Till, J.E., McCulloch, E.A. J. Natl. Cancer Inst. (1979) [Pubmed]
  22. Circumvention of multiple-drug resistance in human cancer cells by thioridazine, trifluoperazine, and chlorpromazine. Akiyama, S., Shiraishi, N., Kuratomi, Y., Nakagawa, M., Kuwano, M. J. Natl. Cancer Inst. (1986) [Pubmed]
  23. Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. Beketic-Oreskovic, L., Durán, G.E., Chen, G., Dumontet, C., Sikic, B.I. J. Natl. Cancer Inst. (1995) [Pubmed]
  24. Increased therapeutic index of antineoplastic drugs in combination with intracellular histamine antagonists. Brandes, L.J., LaBella, F.S., Warrington, R.C. J. Natl. Cancer Inst. (1991) [Pubmed]
  25. An anti-alpha-fetoprotein antibody-daunorubicin conjugate with a novel poly-L-glutamic acid derivative as intermediate drug carrier. Tsukada, Y., Kato, Y., Umemoto, N., Takeda, Y., Hara, T., Hirai, H. J. Natl. Cancer Inst. (1984) [Pubmed]
  26. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Zaman, G.J., Lankelma, J., van Tellingen, O., Beijnen, J., Dekker, H., Paulusma, C., Oude Elferink, R.P., Baas, F., Borst, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  27. Protein kinase Czeta mediated Raf-1/extracellular-regulated kinase activation by daunorubicin. Mas, V.M., Hernandez, H., Plo, I., Bezombes, C., Maestre, N., Quillet-Mary, A., Filomenko, R., Demur, C., Jaffrézou, J.P., Laurent, G. Blood (2003) [Pubmed]
  28. Aromatic hydrocarbon receptor (AhR).AhR nuclear translocator- and p53-mediated induction of the murine multidrug resistance mdr1 gene by 3-methylcholanthrene and benzo(a)pyrene in hepatoma cells. Mathieu, M.C., Lapierre, I., Brault, K., Raymond, M. J. Biol. Chem. (2001) [Pubmed]
  29. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). Litman, T., Brangi, M., Hudson, E., Fetsch, P., Abati, A., Ross, D.D., Miyake, K., Resau, J.H., Bates, S.E. J. Cell. Sci. (2000) [Pubmed]
  30. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Minderman, H., O'Loughlin, K.L., Pendyala, L., Baer, M.R. Clin. Cancer Res. (2004) [Pubmed]
  31. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer and Leukemia Group B. Stone, R.M., Berg, D.T., George, S.L., Dodge, R.K., Paciucci, P.A., Schulman, P., Lee, E.J., Moore, J.O., Powell, B.L., Schiffer, C.A. N. Engl. J. Med. (1995) [Pubmed]
  32. Measurement of cremophor EL following taxol: plasma levels sufficient to reverse drug exclusion mediated by the multidrug-resistant phenotype. Webster, L., Linsenmeyer, M., Millward, M., Morton, C., Bishop, J., Woodcock, D. J. Natl. Cancer Inst. (1993) [Pubmed]
  33. Effect of tamoxifen on cell lines displaying the multidrug-resistant phenotype. Berman, E., Adams, M., Duigou-Osterndorf, R., Godfrey, L., Clarkson, B., Andreeff, M. Blood (1991) [Pubmed]
  34. Correlation of drug sensitivity in vitro with clinical responses in childhood acute myeloid leukemia. Dow, L.W., Dahl, G.V., Kalwinsky, D.K., Mirro, J., Nash, M.B., Roberson, P.K. Blood (1986) [Pubmed]
  35. Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. List, A.F., Spier, C., Greer, J., Wolff, S., Hutter, J., Dorr, R., Salmon, S., Futscher, B., Baier, M., Dalton, W. J. Clin. Oncol. (1993) [Pubmed]
WikiGenes - Universities