The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Status of blood group carbohydrate chains in ontogenesis and in oncogenesis.

Blood group ABH determinants in human erythrocytes are carried by four kinds of glycolipid carbohydrate chains, differing in their structural complexity. They are Aa, Ab, Ac, and Ad for A variants, and H1, H2, H3, and H4 for H variants (Table I and Fig 1). Based on the surface labeling of A variants and on the reactivity of erythrocytes to antibodies directed against H3 and against its degradation products, it is concluded that complex variants of A or H determinants (Ac and Ad/or H3 and H4) are absent or significantly low in fetal erythrocytes (80-150 days after gestation) and in new born erythrocytes, whereas these complex structures are fully developed in adult erythrocytes. In contrast, A determinants linked to simpler carbohydrate chains (Aa, Ab variants) are fully developed before birth and do not show significant change after birth. The precursor of blood group carbohydrate chains seems to be abundant in fetal or newborn erythrocytes. This assumption is based on the higher reactivity of fetal or newborn erythrocytes to an antibody, which is directed against the precursor N-acetylglucosaminly beta1 leads to 3 galactosyl beta1 leads to 4 glucosylceramide than in adult erythorocytes. Reactions of glycolipids of gastrointestinal mucosa, with antibodies directed against H3 glycolipid and its degradation products, were compared to that of gastrointestinal tumors. The reaction to bela Glc NAc1 leads to 3 beta Gall leads to 4 Glc leads to ceramide (structure 4), which is the precursor of all blood group glycolipids, was consistently high in many cases of tumor glycolipid than that of normal glycolipid. This as well as other evidence supports a general concept that the process of ontogenesis of a blood group carbohydrate chain occurs as step-by-step elongation and arborization, and that blocking of such a development of a carbohydrate chain occurs in the process of oncogenesis.[1]


  1. Status of blood group carbohydrate chains in ontogenesis and in oncogenesis. Watanabe, K., Hakomori, S.I. J. Exp. Med. (1976) [Pubmed]
WikiGenes - Universities