Equilibrium studies of the cyclic AMP receptor protein-DNA interaction.
The binding of the Escherichia coli cyclic AMP receptor protein (CAP) to restriction fragments containing the lac promoter-operator region has been investigated as a function of cAMP concentration, using a sensitive gel electrophoresis assay. Under standard conditions (13 mM ionic strength), the equilibrium constant for CAP binding to its primary site on a 203 base-pair lac promoter fragment is 6.3 X 10(8) M-1 at 0.2 microM-cAMP, and increases to 8.4 X 10(10) M-1 at 5.0 microM-cAMP. The latter is about 10(5) times larger than the equilibrium constant for binding to an isolated, non-specific site. The L8 mutation, which renders the lac promoter unresponsive to CAP in vivo, lowers this binding affinity by five- to tenfold. Analysis of the cAMP dependency of binding over the concentration range of 0.2 microM to 10 microM reveals that uptake of a single equivalent of cAMP is required for site-specific binding. Similarly, the transfer of CAP from a non-specific DNA site to a specific site requires the net uptake of a single molecule of cAMP. In contrast, co-operative non-specific binding to DNA was found to be independent of cAMP concentration with an equilibrium binding constant of 6 X 10(6) M-1. We conclude that the cAMP affinity of the two CAP subunits in the specific promoter complex is not equal, and that the complex structure therefore deviates significantly from twofold symmetry. A model for the regulation of the lac promoter by the intracellular cAMP concentration is proposed on the basis of the equilibrium binding results.[1]References
- Equilibrium studies of the cyclic AMP receptor protein-DNA interaction. Fried, M.G., Crothers, D.M. J. Mol. Biol. (1984) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg