The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Concentration Camps

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Concentration Camps


Psychiatry related information on Concentration Camps


High impact information on Concentration Camps


Chemical compound and disease context of Concentration Camps


Biological context of Concentration Camps

  • Concentrations of a type IV-specific phosphodiesterase inhibitor, rolipram, which had no significant effect on basal cAMP concentration, increased the cAMP response of hippocampal slices to stimulation with forskolin and induced persistent long-term potentiation in CA1 after a single tetanic train [15].
  • E2 and 2-OHE2 had no effect, but 2-MeOE2 caused a significant (P < 0.05) increase in cAMP concentration in early S-phase and a decrease during mitosis [16].
  • The remaining 28 single ligands produced changes in relatively few genes, even though they elicited measurable elevations in intracellular Ca(2+) and cAMP concentration and/or protein phosphorylation, including cytokines, chemokines, and other ligands that interact with G protein-coupled receptors [17].
  • In a previous publication, we showed that VACs are rapidly exocytosed upon treatment with 8-Br-3',5'-cyclic adenosine monophosphate (8-Br-cAMP), a membrane-permeable analog of cAMP, and that this exocytosis correlates with variations in the cellular cAMP concentration in response to the cell-cell contacts [18].
  • Using the stable cAMP derivative (8-(4-chlorophenylthio)-cAMP) as an inducer, we found that a 6-fold higher cAMP concentration was needed in HTC cells to achieve the same extent of enzyme induction as in Fu5-5 cells [19].

Anatomical context of Concentration Camps


Associations of Concentration Camps with chemical compounds


Gene context of Concentration Camps

  • Although the heat shock element alone exhibits no UAS activity under conditions in which UASPDS promotes transcription, UASHS interacts positively with UASPDS to mediate high levels of SSA3 transcription in response to nutrient limitation and lowered intracellular cAMP concentration [29].
  • In contrast, agents that increased cAMP concentration, abolished RPE proliferation, and MEK/ERK activation [30].
  • Basal as well as GHRH-stimulated GTPase activity and intracellular cAMP concentration are also significantly greater in 293/G3R-4 cells as compared to 293/G5R-12 cells [31].
  • This differential regulation of IFN-gamma and IL-10 expression was related to intracellular cAMP concentration [32].
  • In strains carrying the cif1 mutation the intracellular concentration of ATP decreased immediately after addition of glucose while the intracellular concentration of cAMP did not increase. cAMP concentration increased in response to galactose or 2,4-dinitrophenol [33].

Analytical, diagnostic and therapeutic context of Concentration Camps


  1. Equilibrium studies of the cyclic AMP receptor protein-DNA interaction. Fried, M.G., Crothers, D.M. J. Mol. Biol. (1984) [Pubmed]
  2. Impaired inner medullary production of prostaglandin E2 in the kidney of the myxedematous rat. Zenser, T.V., Robinson, A.G., Seif, S.M., Davis, B.B. Endocrinology (1978) [Pubmed]
  3. Activation of muscarinic cholinergic receptors in mouse neuroblastoma x rat glioma hybrid cells: rapid induction of enhanced capacity of prostaglandin E1 receptors to stimulate cyclic AMP accumulation. Thomas, J.M., Hoffman, B.B. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  4. A 3',5' cyclic AMP (cAMP) phosphodiesterase modulates cAMP levels and optimizes competence in Haemophilus influenzae Rd. Macfadyen, L.P., Ma, C., Redfield, R.J. J. Bacteriol. (1998) [Pubmed]
  5. Acid and base secretion in the Calu-3 model of human serous cells. Krouse, M.E., Talbott, J.F., Lee, M.M., Joo, N.S., Wine, J.J. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  6. Serotonin reduces potassium current in rutabaga and wild-type Drosophila neurons. Alshuaib, W.B., Mathew, M.V., Hasan, M.Y., Fahim, M.A. Int. J. Neurosci. (2003) [Pubmed]
  7. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Patrucco, E., Notte, A., Barberis, L., Selvetella, G., Maffei, A., Brancaccio, M., Marengo, S., Russo, G., Azzolino, O., Rybalkin, S.D., Silengo, L., Altruda, F., Wetzker, R., Wymann, M.P., Lembo, G., Hirsch, E. Cell (2004) [Pubmed]
  8. Neural induction is mediated by cross-talk between the protein kinase C and cyclic AMP pathways. Otte, A.P., van Run, P., Heideveld, M., van Driel, R., Durston, A.J. Cell (1989) [Pubmed]
  9. Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuitm. Hempel, C.M., Vincent, P., Adams, S.R., Tsien, R.Y., Selverston, A.I. Nature (1996) [Pubmed]
  10. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Zhao, A.Z., Huan, J.N., Gupta, S., Pal, R., Sahu, A. Nat. Neurosci. (2002) [Pubmed]
  11. Right ventricular outflow tract tachycardia due to a somatic cell mutation in G protein subunitalphai2. Lerman, B.B., Dong, B., Stein, K.M., Markowitz, S.M., Linden, J., Catanzaro, D.F. J. Clin. Invest. (1998) [Pubmed]
  12. Elevation of cyclic adenosine monophosphate levels independently down regulates IL-1, IL-2, and IL-2 receptor (CD25) syntheses. Iwaz, J., Kouassi, E., Lafont, S., Revillard, J.P. Int. J. Immunopharmacol. (1990) [Pubmed]
  13. Protein tyrosine kinase-dependent regulation of adenylate cyclase and phosphatidylinositol 3-kinase activates the expression of glial fibrillary acidic protein upon induction of differentiation in rat c6 glioma. Roymans, D., Grobben, B., Claes, P., Slegers, H. Cell Biol. Int. (2001) [Pubmed]
  14. Inhibition of experimental colon cancer metastasis by the GABA-receptor agonist nembutal. Thaker, P.H., Yokoi, K., Jennings, N.B., Li, Y., Rebhun, R.B., Rousseau, D.L., Fan, D., Sood, A.K. Cancer Biol. Ther. (2005) [Pubmed]
  15. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Barad, M., Bourtchouladze, R., Winder, D.G., Golan, H., Kandel, E. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  16. Effects of 17 beta-estradiol metabolites on cell cycle events in MCF-7 cells. Lottering, M.L., Haag, M., Seegers, J.C. Cancer Res. (1992) [Pubmed]
  17. Analysis of the major patterns of B cell gene expression changes in response to short-term stimulation with 33 single ligands. Zhu, X., Hart, R., Chang, M.S., Kim, J.W., Lee, S.Y., Cao, Y.A., Mock, D., Ke, E., Saunders, B., Alexander, A., Grossoehme, J., Lin, K.M., Yan, Z., Hsueh, R., Lee, J., Scheuermann, R.H., Fruman, D.A., Seaman, W., Subramaniam, S., Sternweis, P., Simon, M.I., Choi, S. J. Immunol. (2004) [Pubmed]
  18. Cyclic AMP modulates the rate of 'constitutive' exocytosis of apical membrane proteins in Madin-Darby canine kidney cells. Brignoni, M., Pignataro, O.P., Rodriguez, M.L., Alvarez, A., Vega-Salas, D.E., Rodriguez-Boulan, E., Salas, P.J. J. Cell. Sci. (1995) [Pubmed]
  19. Differential sensitivity of HTC and Fu5-5 cells for induction of tyrosine aminotransferase by 3',5'-cyclic adenosine monophosphate. Wasner, G., Simons, S.S. Mol. Endocrinol. (1987) [Pubmed]
  20. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Jurevicius, J., Fischmeister, R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  21. Differential amplification of antagonistic receptor pathways in neutrophils. Mueller, H., Weingarten, R., Ransnas, L.A., Bokoch, G.M., Sklar, L.A. J. Biol. Chem. (1991) [Pubmed]
  22. Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. Adachi, S., Nakano, T., Vliagoftis, H., Metcalfe, D.D. J. Immunol. (1999) [Pubmed]
  23. Starfish oocyte maturation: 1-methyladenine triggers a drop of cAMP concentration related to the hormone-dependent period. Meijer, L., Zarutskie, P. Dev. Biol. (1987) [Pubmed]
  24. Effect of estrogen on adenosine 3'5',cyclic monophosphate in quail oviduct: possible involvement in estradiol-activated growth. Laugier, C., Courion, C., Pageaux, J.F., Fanidi, A., Dumas, M.Y., Sandoz, D., Nemoz, G., Prigent, A.F., Pacheco, H. Endocrinology (1988) [Pubmed]
  25. Studies of the mechanism by which 3,5,3'- triiodothyronine stimulates 2-deoxyglucose uptake in rat thymocytes in vitro. Role of calcium and adenosine 3':5'-monophosphate. Segal, J., Ingbar, S.H. J. Clin. Invest. (1981) [Pubmed]
  26. Antisecretory effects of indomethacin on rabbit ileal mucosa in vitro. Smith, P.L., Blumberg, J.B., Stoff, J.S., Field, M. Gastroenterology (1981) [Pubmed]
  27. Bicarbonate transport by rabbit duodenum in vitro: effect of vasoactive intestinal polypeptide, prostaglandin E2, and cyclic adenosine monophosphate. Yao, B., Hogan, D.L., Bukhave, K., Koss, M.A., Isenberg, J.I. Gastroenterology (1993) [Pubmed]
  28. Inhibition of intestinal secretion in rats by colchicine and vinblastine. Notis, W.M., Orellana, S.A., Field, M. Gastroenterology (1981) [Pubmed]
  29. Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. Boorstein, W.R., Craig, E.A. EMBO J. (1990) [Pubmed]
  30. cAMP inhibits the proliferation of retinal pigmented epithelial cells through the inhibition of ERK1/2 in a PKA-independent manner. Hecquet, C., Lefevre, G., Valtink, M., Engelmann, K., Mascarelli, F. Oncogene (2002) [Pubmed]
  31. Biological activities of two porcine growth hormone-releasing hormone receptor isoforms. Hassan, H.A. Arch. Biochem. Biophys. (2001) [Pubmed]
  32. Differential regulation of IFN-gamma, IL-10 and inducible nitric oxide synthase in human T cells by cyclic AMP-dependent signal transduction pathway. Benbernou, N., Esnault, S., Shin, H.C., Fekkar, H., Guenounou, M. Immunology (1997) [Pubmed]
  33. Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. González, M.I., Stucka, R., Blázquez, M.A., Feldmann, H., Gancedo, C. Yeast (1992) [Pubmed]
  34. Inhibitory effects of atropine and adrenergic antagonists on the changes in autonomic receptors and cyclic nucleotides of rat parotid and submandibular glands caused by sympathetic nerve stimulation. Schneyer, C.A., Humphreys-Beher, M. J. Auton. Nerv. Syst. (1988) [Pubmed]
  35. Effects of fasting on corticosterone production by zona fasciculata-reticularis cells in ovariectomized rats. Chang, L.L., Kau, M.M., Wun, W.S., Ho, L.T., Wang, P.S. J. Investig. Med. (2002) [Pubmed]
  36. Insulin counters the glycogenolytic effect of arginine vasotocin in liver pieces from the axolotl, Ambystoma mexicanum, cultured in vitro. Janssens, P.A., Grigg, J.A. Gen. Comp. Endocrinol. (1993) [Pubmed]
  37. Effects of some m-cholinomimetics and alpha- and beta-adrenomimetics on cyclic-AMP content of the rat submaxillary gland. Grosu, L., Barabas, E. Physiologie. (1982) [Pubmed]
  38. cAMP and extrarenal vasopressin V2 receptors in dogs. Liard, J.F. Am. J. Physiol. (1992) [Pubmed]
WikiGenes - Universities