The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

An affinity label for the regulatory dithiol of ribulose-5-phosphate kinase from maize (Zea mays).

Ribulose-5-phosphate kinase from maize (Zea mays) can exist in either a reduced, active form or an oxidized, inactive form. Reduced ribulose-5-phosphate kinase is rapidly and irreversibly inactivated by the dichlorotriazine dye Reactive Red 1 (Procion Red MX-2B), but the irreversible inactivation of the oxidized form of ribulose-5-phosphate kinase occurs at only 0.05% of this rate. The rate of inactivation of the reduced enzyme by Reactive Red 1 (apparent bimolecular rate constant 10(4)M-1 X s-1 at pH 7.4 and 25 degrees C) is several orders of magnitude greater than previous estimates of the rates of dye-mediated inactivation of other enzymes. The dye-dependent inactivation of the reduced enzyme is inhibited by Hg2+ or p-mercuribenzoate (thiol reagents that reversibly inhibit ribulose-5-phosphate kinase activity), or by ATP and ADP, the nucleotide substrates of the enzyme. Hydrolysed Reactive Red 1, which does not inactivate the enzyme, is a reversible inhibitor of ribulose-5-phosphate kinase. This inhibition is competitive with respect to ATP (Ki approximately 0.5 mM). The dye appears to act as an affinity label for the ATP/ADP-binding site by preferentially arylating a thiol residue generated during the reductive activation of the enzyme that is achieved by dithiothreitol or thioredoxin in vitro or during illumination of leaves.[1]


WikiGenes - Universities