The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Codon context effects in missense suppression.

After our first observation of codon context effects in missense suppression ( Murgola & Pagel , 1983), we measured the suppression of missense mutations at two positions in trpA in Escherichia coli. The suppressible codons in the trpA messenger RNA were the lysine codons, AAA and AAG, and the glutamic acid codons, GAA and GAG. The mRNA sites of the codons correspond to amino acids 211 and 234 of the trpA polypeptide, positions at which glycine is the wild-type amino acid. Our data demonstrated codon context effects with both pairs of codons. The results indicate that suppression of AAA and AAG by mutant lysine transfer RNAs was more efficient at 211 than at 234, whereas suppression of GAA and GAG by two different mutant glycine tRNAs was more efficient at 234 than at 211. In general, the context effects were more pronounced with GAG and AAG than with GAA and AAA. (In some instances it appeared that suppression of GAA or AAA at a given position was more effective than suppression of GAG or AAG.) By contrast, no context effects were observed with a glyT suppressor of AAA and AAG, a glyT GAA/G-suppressor, and a glyU suppressor of GAG. Our observation of this phenomenon in missense suppression demonstrates that codon context can affect polypeptide elongation and that the effects can be different depending on the codons and tRNAs examined. It is suggested that tRNA-tRNA interaction on the ribosome is involved in the observed context effects.[1]

References

  1. Codon context effects in missense suppression. Murgola, E.J., Pagel, F.T., Hijazi, K.A. J. Mol. Biol. (1984) [Pubmed]
 
WikiGenes - Universities