Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the house fly.
Resistance to the organophosphate insecticide tetrachlorvinphos was examined in a house fly (Musca domestica L.) strain with an altered acetylcholinesterase (AChE) of decreased sensitivity to inhibition by the insecticide. Genetic tests showed that both resistance and the altered AChE were controlled by semi-dominant gene(s) on chromosome II. The gene for resistance was five crossover units from the mutant marker stubby wing (stw). A house fly strain was prepared in which resistance was introduced in to a susceptible stw strain by recombination. Biochemical assays revealed that the altered AChE was introduced along with resistance. Assays of the AChE of resistant and susceptible stw strains by two independent methods showed that the enzyme from resistant flies was 30 times more slowly inhibited by tetrachlorvinphos than the enzyme from susceptible flies.[1]References
- Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the house fly. Plapp, F.W., Tripathi, R.K. Biochem. Genet. (1978) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg