The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Analysis of the role of microtubules and actin in erythrophore intracellular motility.

The Holocentrus erythrophore, a red pigment cell, represents a model system for the study of organized intracellular transport. We have investigated the possibility that microtubules and actin are integral components of the pigment translocating motility machine. By creating cells that have total or partial loss of the microtubule framework we have demonstrated that the presence of microtubules is essential for organized, radial transport of the pigment granules. However, in the absence of microtubules, some undirected movement of the pigment can be stimulated; this suggests that a nonmicrotubular component of the cytoplast is responsible, at least in part, for the generation of motive force. In order to test the hypothesis that this component consists of actin or actomyosin, we examined the effects of probes for these classical motility proteins. Neither microinjection of phalloidin, DNase I or N-ethylmaleimide-modified heavy meromyosin nor exogenous application of cytochalasin B has any effect on pigment motion, although these materials do block the actin-mediated motility of other systems in our hands. Therefore, intracellular particle transport in erythrophores does not appear to be actin or actomyosin-based.[1]

References

 
WikiGenes - Universities