The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates.

It is possible, by using Fourier-transform infrared (FTIR) difference spectroscopy, to detect the conformational changes occurring in both the protein and the chromophore of bacteriorhodopsin during the photocycle. In contrast to Raman spectroscopy, a laser is unnecessary and hence the problem of a perturbing probe beam is eliminated. Furthermore, the relatively high signal-to-noise ratio obtainable with FTIR enables measurements to be made in minutes over a large spectral range. In the study reported in this paper, we used this method to examine the state of protonation of the retinylidene Schiff base in light-adapted bR570 and in K, the first intermediate in the photocycle. Resonance Raman spectroscopy provides evidence that bR570 is protonated, but these results have been questioned on the basis of theoretical and experimental grounds. FTIR difference spectral changes in the bR570-to-K transition clearly indicate that bR570 contains a protonated Schiff base. In contrast, the K intermediate displays a Schiff base that is altered but still is associated to some degree with a proton. Because the low-temperature FTIR difference spectrum of bR570 and K is similar to the recently reported low-temperature resonance Raman spectra of bR570 and K [Braiman, M. & Mathies, R. (1982) Proc. Natl. Acad. Sci. USA 79, 403-407], we can assign most, but not all, vibrational changes in the bR570-to-K transition to the chromophore. These results are consistent with a simple model of the first step in the photocycle which involves a movement of the Schiff base proton away from a counterion.[1]

References

  1. Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates. Rothschild, K.J., Marrero, H. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
 
WikiGenes - Universities