The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Spectrum Analysis, Raman

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Spectrum Analysis, Raman

  • Examination of a number of site-directed mutants of E. coli CcmE by resonance Raman spectroscopy has identified ligands of the heme iron and provided insight into the initial steps of heme binding by CcmE before it binds the heme covalently [1].
  • An investigation of hydrogenase I and hydrogenase II from Clostridium pasteurianum by resonance Raman spectroscopy. Evidence for a [2Fe-2S] cluster in hydrogenase I [2].
  • The Pr --> Pfr phototransformation of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens and the structures of the biliverdin chromophore in the parent states and the cryogenically trapped intermediate Meta-R(C) were investigated with resonance Raman spectroscopy and flash photolysis [3].
  • The viral shell has been investigated using time and temperature resolved Raman and ultraviolet-resonance Raman spectroscopy to reveal novel features of the capsid structure and its pathway of assembly from P3 subunits [4].
  • Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation [5].
 

Psychiatry related information on Spectrum Analysis, Raman

 

High impact information on Spectrum Analysis, Raman

  • The formation of vibrationally excited heme upon photodissociation of carbonmonoxy myoglobin and its subsequent vibrational energy relaxation was monitored by picosecond anti-Stokes resonance Raman spectroscopy [7].
  • Resonance Raman spectroscopy has been used to identify both C-O stretching and metal-CO stretching vibrations of the carbon monoxide adduct of the enzyme [8].
  • Pulse-probe transient Raman spectroscopy, with probe excitation at 230 nanometers, reveals changes in signals arising from tyrosine and tryptophan residues of the hemoglobin molecule as it moves from the relaxed (R) to the tense (T) state after photodeligation [9].
  • To assess possible consequences of electric fields on the redox processes of cytochrome c, the protein can be immobilized to self-assembled monolayers on electrodes and studied by surface-enhanced resonance Raman spectroscopy [10].
  • Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy [10].
 

Chemical compound and disease context of Spectrum Analysis, Raman

 

Biological context of Spectrum Analysis, Raman

 

Anatomical context of Spectrum Analysis, Raman

 

Associations of Spectrum Analysis, Raman with chemical compounds

 

Gene context of Spectrum Analysis, Raman

 

Analytical, diagnostic and therapeutic context of Spectrum Analysis, Raman

References

  1. Dynamic ligation properties of the Escherichia coli heme chaperone CcmE to non-covalently bound heme. Stevens, J.M., Uchida, T., Daltrop, O., Kitagawa, T., Ferguson, S.J. J. Biol. Chem. (2006) [Pubmed]
  2. An investigation of hydrogenase I and hydrogenase II from Clostridium pasteurianum by resonance Raman spectroscopy. Evidence for a [2Fe-2S] cluster in hydrogenase I. Macor, K.A., Czernuszewicz, R.S., Adams, M.W., Spiro, T.G. J. Biol. Chem. (1987) [Pubmed]
  3. Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. Borucki, B., von Stetten, D., Seibeck, S., Lamparter, T., Michael, N., Mroginski, M.A., Otto, H., Murgida, D.H., Heyn, M.P., Hildebrandt, P. J. Biol. Chem. (2005) [Pubmed]
  4. Structure, interactions and dynamics of PRD1 virus I. Coupling of subunit folding and capsid assembly. Tuma, R., Bamford, J.H., Bamford, D.H., Russell, M.P., Thomas, G.J. J. Mol. Biol. (1996) [Pubmed]
  5. Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation. Aubrey, K.L., Thomas, G.J. Biophys. J. (1991) [Pubmed]
  6. Analysis of near-infrared Raman spectroscopy as a new technique for a transcutaneous non-invasive diagnosis of blood components. Pilotto, S., Pacheco, M.T., Silveira, L., Villaverde, A.B., Zângaro, R.A. Lasers in medical science. (2001) [Pubmed]
  7. Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin. Mizutani, Y., Kitagawa, T. Science (1997) [Pubmed]
  8. Nature's carbonylation catalyst: Raman spectroscopic evidence that carbon monoxide binds to iron, not nickel, in CO dehydrogenase. Qiu, D., Kumar, M., Ragsdale, S.W., Spiro, T.G. Science (1994) [Pubmed]
  9. Nanosecond dynamics of the R-->T transition in hemoglobin: ultraviolet Raman studies. Rodgers, K.R., Spiro, T.G. Science (1994) [Pubmed]
  10. Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy. Murgida, D.H., Hildebrandt, P. Acc. Chem. Res. (2004) [Pubmed]
  11. N-terminal domain of the bacteriophage lambda repressor: investigation of secondary structure and tyrosine hydrogen bonding in wild-type and mutant sequences by Raman spectroscopy. Thomas, G.J., Prescott, B., Benevides, J.M., Weiss, M.A. Biochemistry (1986) [Pubmed]
  12. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy. Dinakarpandian, D., Shenoy, B., Pusztai-Carey, M., Malcolm, B.A., Carey, P.R. Biochemistry (1997) [Pubmed]
  13. Observation of the Fe-O2 and FeIV=O stretching Raman bands for dioxygen reduction intermediates of cytochrome bo isolated from Escherichia coli. Hirota, S., Mogi, T., Ogura, T., Hirano, T., Anraku, Y., Kitagawa, T. FEBS Lett. (1994) [Pubmed]
  14. Resonance Raman spectroscopy: a new technology for tissue oxygenation monitoring. Ward, K.R., Torres Filho, I., Barbee, R.W., Torres, L., Tiba, M.H., Reynolds, P.S., Pittman, R.N., Ivatury, R.R., Terner, J. Crit. Care Med. (2006) [Pubmed]
  15. Macular pigment Raman detector for clinical applications. Ermakov, I., Ermakova, M., Gellermann, W., Bernstein, P.S. Journal of biomedical optics. (2004) [Pubmed]
  16. A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Miura, T., Takeuchi, H., Harada, I. Biochemistry (1988) [Pubmed]
  18. Solution conformations and interactions of alpha and beta subunits of the Oxytricha nova telomere binding protein: investigation by Raman spectroscopy. Laporte, L., Stultz, J., Thomas, G.J. Biochemistry (1997) [Pubmed]
  19. Molecular mechanism of DNA recognition by the alpha subunit of the Oxytricha telomere binding protein. Laporte, L., Benevides, J.M., Thomas, G.J. Biochemistry (1999) [Pubmed]
  20. Molecular properties of p-(dimethylamino)benzaldehyde bound to liver alcohol dehydrogenase: a Raman spectroscopic study. Callender, R., Chen, D., Lugtenburg, J., Martin, C., Rhee, K.W., Sloan, D., Vandersteen, R., Yue, K.T. Biochemistry (1988) [Pubmed]
  21. Visible and UV coherent Raman spectroscopy of dipicolinic acid. Pestov, D., Zhi, M., Sariyanni, Z.E., Kalugin, N.G., Kolomenskii, A.A., Murawski, R., Paulus, G.G., Sautenkov, V.A., Schuessler, H., Sokolov, A.V., Welch, G.R., Rostovtsev, Y.V., Siebert, T., Akimov, D.A., Graefe, S., Kiefer, W., Scully, M.O. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Conformational characteristics of deoxyribonucleic acid-butylamine complexes with C-type circular dichroism spectra. 2. A Raman spectroscopic study. Fish, S.R., Chen, C.Y., Thomas, G.J., Hanlon, S. Biochemistry (1983) [Pubmed]
  23. Calcium-induced lateral phase separations in phosphatidylcholine-phosphatidic acid mixtures. A Raman spectroscopic study. Kouaouci, R., Silvius, J.R., Graham, I., Pézolet, M. Biochemistry (1985) [Pubmed]
  24. Detection of glutamate in optically trapped single nerve terminals by Raman spectroscopy. Ajito, K., Han, C., Torimitsu, K. Anal. Chem. (2004) [Pubmed]
  25. Glucose determination in human aqueous humor with Raman spectroscopy. Lambert, J.L., Pelletier, C.C., Borchert, M. Journal of biomedical optics. (2005) [Pubmed]
  26. Resonance Raman investigation of dioxygen bonding in oxycobaltmyoglobin and oxycobalthemoglobin: structural implication of splittings of the bound O--O stretching vibration. Tsubaki, M., Yu, N.T. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  27. Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates. Rothschild, K.J., Marrero, H. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  28. Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2'-deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2'-deoxycytidine. Suen, W., Spiro, T.G., Sowers, L.C., Fresco, J.R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  29. Conformational features of distamycin-DNA and netropsin-DNA complexes by Raman spectroscopy. Martin, J.C., Wartell, R.M., O'Shea, D.C. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  30. NCB5OR is a novel soluble NAD(P)H reductase localized in the endoplasmic reticulum. Zhu, H., Larade, K., Jackson, T.A., Xie, J., Ladoux, A., Acker, H., Berchner-Pfannschmidt, U., Fandrey, J., Cross, A.R., Lukat-Rodgers, G.S., Rodgers, K.R., Bunn, H.F. J. Biol. Chem. (2004) [Pubmed]
  31. The heme environment of recombinant human indoleamine 2,3-dioxygenase. Structural properties and substrate-ligand interactions. Terentis, A.C., Thomas, S.R., Takikawa, O., Littlejohn, T.K., Truscott, R.J., Armstrong, R.S., Yeh, S.R., Stocker, R. J. Biol. Chem. (2002) [Pubmed]
  32. The heme environment of mouse neuroglobin. Evidence for the presence of two conformations of the heme pocket. Couture, M., Burmester, T., Hankeln, T., Rousseau, D.L. J. Biol. Chem. (2001) [Pubmed]
  33. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. Brown, L.S., Dioumaev, A.K., Lanyi, J.K., Spudich, E.N., Spudich, J.L. J. Biol. Chem. (2001) [Pubmed]
  34. Rapid-flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin. Mathies, R., Oseroff, A.R., Stryer, L. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  35. Laser Raman spectroscopy and circular dichroism studies of the peptide hormones mesotocin, vasotocin, lysine vasopressin, and arginine vasopressin. Conformational analysis. Tu, A.T., Lee, J., Deb, K.K., Hruby, V.J. J. Biol. Chem. (1979) [Pubmed]
  36. Effect of inelastic deformation on crystallite size in post-shock 6H polytype SiC. Kobayashi, T., Sekine, T., He, H. Phys. Rev. Lett. (2000) [Pubmed]
  37. Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography. Vaillancourt, F.H., Barbosa, C.J., Spiro, T.G., Bolin, J.T., Blades, M.W., Turner, R.F., Eltis, L.D. J. Am. Chem. Soc. (2002) [Pubmed]
  38. Preparation and characterization of organotin-oxomolybdate coordination polymers and their use in sulfoxidation catalysis. Abrantes, M., Valente, A.A., Pillinger, M., Gonçalves, I.S., Rocha, J., Romão, C.C. Chemistry (Weinheim an der Bergstrasse, Germany) (2003) [Pubmed]
  39. Raman spectroscopy of the thermal properties of reassembled high-density lipoprotein: apolipoprotein A-I complexes of dimyristoylphosphatidylcholine. Gilman, T., Kauffman, J.W., Pownall, H.J. Biochemistry (1981) [Pubmed]
 
WikiGenes - Universities