The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype.

mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis ( CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6kbA-->G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA-->G-mRNA was 5-10-fold less abundant than delta F508 mRNA. Mutation 1811+1.6kbA-->G was found in 21 Spanish and 1 German CF chromosomes, making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype delta F508/1811+1.6kbA-->G have only 1%-3% of normal CFTR mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients.[1]

References

  1. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype. Chillón, M., Dörk, T., Casals, T., Giménez, J., Fonknechten, N., Will, K., Ramos, D., Nunes, V., Estivill, X. Am. J. Hum. Genet. (1995) [Pubmed]
 
WikiGenes - Universities