The changing pharmacodynamics of metocurine identify the onset and offset of canine gastrocnemius disuse atrophy.
BACKGROUND: Immobilization of skeletal muscle results in disuse atrophy and resistance to nondepolarizing muscle relaxants. We studied the pharmacodynamics of metocurine (MTC) to identify the development and recovery of disuse-related resistance to MTC. METHODS: Nineteen dogs underwent cast immobilization of a hind limb for as long as 3 weeks. Before, during, and after casting, dogs were intermittently anesthetized with thiamylal-N2O-fentanyl. The blood concentration of MTC and the corresponding degree of paralysis after a brief infusion were recorded and were used to characterize the pharmacokinetics and pharmacodynamics of MTC. RESULTS: Pharmacodynamic study of the response to MTC demonstrated resistance by the 4th day of casting. The effect-site concentration associated with 50% paralysis of twitch increased after 3 weeks from approximately 250 to 750 ng/ml. After cast removal, resistance persisted for 2 more weeks. Six weeks after cast removal, the effect-site concentration associated with 50% paralysis of twitch was normal in every dog. CONCLUSIONS: Within the context of this study of immobilization disuse atrophy, pharmacokinetic and pharmacodynamic characterization of antagonist responses can be used to infer muscle disuse-related changes in acetylcholine receptors.[1]References
- The changing pharmacodynamics of metocurine identify the onset and offset of canine gastrocnemius disuse atrophy. Fung, D.L., White, D.A., Gronert, G.A., Disbrow, E. Anesthesiology (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg